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Background: Augmented reality (AR) allows the surgeon
to represent holographic patient-specific anatomical infor-
mation and surgical instruments in the physical world. To
correctly superimpose virtual and physical objects, a hand-
eye calibrationmethod for mapping the virtual and physical
spaces was proposed.
Methods:Mathematical relationships between the virtual
camera and the physical space were derived. Finally, the
accuracy and robustness of the proposed HE calibration
methodwere qualitatively and quantitatively evaluated.
Results: The proposed calibrationmethod allows us to de-
termine an optimal invariant spatiotemporal mapping be-
tween the virtual camera and the physical space.
Conclusion:Qualitatively and quantitatively reliable and ac-
curate estimates for the physical-virtual mapping transfor-
mation were verified. Consequently, imaging data and surgi-
cal instruments holograms can be precisely represented in
the physical space.
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1 | INTRODUCTION

Since its introduction about two decades ago, computer-assisted surgery (CAS) has become available for a wide range of
surgical interventions due to increased availability of different imaging modalities, and advances in surgical instruments
and tracking hardware. Single or multimodal imaging datasets, such as computed tomography (CT), magnetic resonance
imaging (MRI), diffusion tensor imaging (DTI), and ultrasound (US) can, therefore, be used to generate patient-specific
anatomical and functional models. Once the correspondences between anatomical landmarks or implanted fiducial are
established in the physical and imaging reference frames, preoperative planning tools, and computer-aided surgery
systems can be used to represent positions and orientations of anatomical structures and of surgical instruments into a
common reference frame, with a high degree of accuracy and consistency [1].

Current commercial surgical navigation platforms are non-immersive systems (e.g., BrainLAB, Germany;Medtronic,
Switzerland; andMedacta International, Switzerland), where the surgical planning, patient information, and tracking
data are displayed on nearby large-screen surgical displays located at or near the surgeon’s working space. Therefore,
attention disruptions are more likely to occur in terms of the surgeon’s gaze, and lack of intuitiveness may possibly exist,
especially among inexperienced surgeons [2, 3].

Due to the remarkable advances in both surgical instruments and techniques, as well as in functional and structural
multimodality imaging, it becomes highly important to provide the clinical staff with all the relevant patient-specific
information and preoperative planning in real-time, aiming at improving surgical outcomes, while decreasing postopera-
tive surgical complications and patient care costs. However, in order to take full advantage of all these recent advances,
new visualization and display technologies as well as human-machine interaction interfaces were needed, which led to
the introduction of newAR paradigms in the field of Computer Assisted Surgery (CAS). Some of these advantages have
been stated in recent studies in the fields of laparoscopic surgery [4, 5], orthopedics [6], neurosurgery [7], and in oral
and craniomaxillofacial surgery [8, 9, 10, 11].

Over the past few years, the computer science community has made considerable efforts towards the development
of calibration techniques for wearable optical see-through head-mounted displays (OST-HMDs), which still remains
a challenging and tailored problem due to the complexities associatedwith specific image projection systems, optics,
as well as to neurophysiological features of the human visual system. Currently, available solutions to determine
computational relationships between the OST-HMDs imaging system and the user’s eyes are established based on
image-vision methods and external tracking systems, which are cumbersome and error-prone, largely relying on
subjective assessments provided by the feedback from users [12, 13, 14, 15, 16].

Recent technology advances in AR is creating an opportunity for a paradigm shift in the field of Computer Assisted
Surgery (CAS). In March 2007, Microsoft released the HoloLens Development Edition. This platform is a wearable
high-definition stereoscopic 3D optical head-mounted system equipped with near-eyemultifocus dichromated gelatin
holographic lenses, two pairs of stereoscopic gray-scale cameras, one depth camera, an RGB camera, and an inertial
measurement unit (IMU).Multisensor data fusion techniques combinedwith sophisticated hardware- and software-
assisted methods were developed by the Microsoft research group to solve important subjectivity-related issues
involved in the calibration process of OST-HMDs [17, 18, 19]. Thesemethods are accomplished by propagating features
existing in the physical space into the virtual world, and bymimicking biological principles of stereo vision in the human
visual system in the absence of an eye-tracking system, where the user-specific inter-pupillary distance (IPD) is the
only needed information. Moreover, a sophisticated hardware-assisted holographic computation technique called
stabilization plane is employed based on the user’s gaze1[20]. These combined techniques provide precise holographic
1In the currentMicrosoftHoloLens development version, the user’s gaze is determinedby computing the intersection between a projected ray from themiddle
of the camera viewport with the surfacemeshmodel representing the physical space.
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rendering capabilities of the virtual content, where the latter is representedwith respect to its poses in the physical
space and not in relation to the position of the user’s eyes in relation to the headset reference frame [21, 22].

The pose of the HoloLens is determined by a proprietary algorithm for Simultaneous Localization andMapping
(SLAM),which estimates the estates (i.e., position, orientation, linear accelerations, and angular velocities) of the headset
with respect to the physical space by combining multisensor data fusion techniques, e.g., inertial, depth, and visual cues).
Recently, several studies have explored the possibility of using theMicrosoft HoloLens in neurosurgery [10, 23, 24],
reconstructive and plastic surgery [25], liver cancer surgery [26], endovascular surgery [27], and in telemedicine [28]. In
all these previously mentioned studies, the authors have not estimated the transformation between the physical and
virtual reference frames. The virtual content representing a physical object and/or a surgical instrument wasmanually
placed and represented with respect to the virtual reference frame. These studies weremainly focused on ergonomics,
usability, and computer-machine interfaces rather than quantitative andmethodological aspects.

Although indoor/outdoor SLAM-basedmethods have reached a considerable state of maturity, and that the im-
plementedHoloLens SLAM-basedmethod being able to accurately and consistently estimate the states of the virtual
camera in the context of recreational applications, additional efforts are needed in order to establish a highly precise
and stable representation of hologramswith respect to their respective counterparts in the physical space, which is a
highly desirable characteristic, especially in the field of CAS.

Recently, Long et al. [29] have proposed two different hybrid-basedmethods to address the HoloLens calibration
problem. The first method is based on a head-anchored technique, while the second one is a world-anchoredmethod
relying on an external optical tracking system to determine the pose of a reference object with respect to the physical
space, which has its counterpart representation in the virtual space. In both evaluated methods, the pose of the
HoloLens’s virtual camera was obtained by using its own SLAM-basedmethod and, it has also been assumed that the
pose of the HoloLens’s virtual camera could be determinedwith a higher degree of reliability and accuracy.

Despite theMicrosoft HoloLens being a promising technology in the field of CAS, the accuracy, robustness, and
performances of its SLAM-basedmethod under specific environmental conditions have not been fully investigated and
evaluated. In our work, we have quantitatively investigated the accuracy of the HoloLensMicrosoft SLAM-based algo-
rithm, supporting the need for the development ofmore suitable and accurate calibrationmethods. Finally, we proposed
a Hand-Eye (HE) based approach combinedwith a commercial optical tracking system to determine a transformation
mapping between the physical world and the virtual cameramodel. Althoughwe considered an external optical tracking
system combinedwith vision-basedmethods, our work fundamentally differs from Long et al. [29] in its formulation
and implementation, since only the holographic near-eye display of theMicrosoft HoloLens is used and, therefore, the
inherent uncertainties arising from SLAM-basedmethods do not play any role in our transformationmatrices estimates.

2 | METHODS

2.1 | Assessing the accuracy and reliability of the HoloLens SLAM-basedmethod

In this work, we initially created an objective benchmark for evaluating the precision of the SLAMmethod employed
by theMicrosoft HoloLens. Initially, we investigated the convergence of the reconstructed surface meshes starting
from a naive physical model M0. A subject wearing the HoloLens headset was asked to walk inside a rectangular
region of 10m long and 5mwide at a self-selected walking speed describing an elliptical trajectory. When completing
each lap n , the surfacemeshMn representing the n-thmeshmodel of the physical spacewas stored for offline post-
processing. Finally, the model convergence, accuracy, and reliability were assessed by evaluating the similarities
between consecutive mappings of the same physical space by using nearest neighbor analysis. Subject-motion tracking
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datawas simultaneously acquired by theHoloLens trackingmiddleware, as well as by an external optical motion capture
system (VICON, Oxford Metrics, UK) by using a set of non-collinear retro-reflective markers rigidly attached to it.
Consequently, the trajectories datasets represented in these two distinct reference frames (i.e., VICON andHoloLens)
were transformed to the principal component space by applying the transformationsT λw andT λs , as shown in Figure
1, where the subscripts s andw denote the SLAM and the VICON reference frames, respectively, and the subscript λ
denotes the principal component space. Finally, a transformationmatrixT hc relating the headset reference frame and
theOST-HMD’s virtual camera was derived by solving the followingmatrix equation:T hc = T hwT

w
λ
T λs T

s
c , as graphically

represented in Figure 1, where the transformationT sc represent the pose of the virtual camera represented in the
virtual space and theT w

h
the pose of the orthonormal basis h defined by the set of non-collinear retro-reflectivemarkers

attached to the HoloLens headset with respect to the physical space. It is important to note that the HoloLens headset
has its representation in the physical and in the virtual reference frames, and that each point in the elliptical motion
trajectory has an orthonormal transformationmappingT hc associated to it, where the latterwould obviously be identical
in an idealized error-free tracking process.

F IGURE 1 SLAM-PCA. v : VICON reference frame (physical space). s : SLAM reference frame. h: HoloLens headset
physically represented into the VICON reference frame. c : HoloLens virtual camera represented into the SLAM
reference frame (virtual space). λ: Principal component space.T hc : Computed calibrationmapping represented by a
dashed blue line, where the known transformations are represented by continuous gray lines.

2.2 | Latency estimation

The latency of the developed application is attributed to different factors, such as network streaming, hardware
computing capabilities, physical material characteristics of the near-eye displays, as well as different challenges in multi-
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target tracking. The system’s latency was computed based on themid-stance walking pattern, which was accomplished
by asking a subject wearing the HoloLens headset to walk at a self-selected walking speed in a predefined space.
Time-series representing the HoloLens headset were simultaneously acquired in the physical and virtual spaces by the
optical motion capture and by the HoloLens SLAM-based localization systems, respectively. These two time-series with
homologous spatiotemporal characteristics were thenmapped into the principal component space. Themid-stance
walking pattern is characterized by a tibiofemoral extension combinedwith a ankle dorsiflexion, moving the body over
the stationary foot, which can then be easily detected by finding local maxima andminima of the gait time-series in the
third component, where the third component is mainly associated with the perpendicular motion of the headset with
respect to the walking surface [30, 31].

2.3 | Pointer calibration and checkerboard-pattern digitization

A set of non-collinear retro-reflective markers were rigidly attached to the Microsoft HoloLens headset and to the
surgical instruments, as shown in Figure 2. The surgical pointer was calibrated by requesting a subject to place the
tip of the pointer on a rigid surface and to perform randomly selected pure 3D rotations, ensuring that any point
represented with respect to this rigid body is characterized by an invariant locus. During this calibration step, the
pointer reference frame was tracked by the optical motion capture system, and the tip of the surgical pointer was
determinedby representing locally the center of the parameterized spherewith respect to the surgical pointer reference
frame by using a parametric least-square approach.

Checkerboard patterns were digitized by using the calibrated optically tracked pointer. Before acquiring the
positions of each individual feature on the checkerboard calibration border, the tip of the pointer was carefully posi-
tioned at each individual corner and remained stationary. Acquired features were locally represented with respect
to the calibration board coordinate frameT bp , and the random sample consensus algorithm (RANSAC) was applied to
accurately detect the estimation of an ideal checkerboard-pattern, ensuring the detection of parallel and perpendicular
lines [32]. Finally, the calibration pattern with known geometrical characteristics was used to determine the HoloLens’s
relative pose with respect to the calibration objectT pc , which was then used to determine its absolute pose with respect
to the physical space [32], as shown in Figure 3.
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F IGURE 2 Experimental setup consisting of aMicrosoft HoloLens with a set of non-collinear retro-reflective
markers (� 19mm) rigidly attached to it, organ of interest, surgical pointer, surgical reference frame anchored at the
organ of interest by using two Kirschner wires, and a VICON optical motion capture system (VICON, OxfordMetrics,
UK) that is not depicted in this image.

2.4 | HE-based calibrationmethod applied to AR in CAS

HE calibrationmethod has been originally developed for serial manipulators by the robotics community, where a camera
wasmounted on an end effector (e.g., gripper) and were abstractly related to eye and hand, respectively. In the robotics
context, the goal of this method is to determine the unknown transformation from the camera (eye) reference frame to
the end effector (hand) reference frame [33, 34]. Onother hand, in our proposed formulation, the digitized checkerboard
patternswere used to create a reference frame p , which has then been locally representedwith respect to the reference
frame of a rigid and flat surface b . Therefore, the checkerboard pattern reference frame can be represented with
respect to the absolute reference frame defined by the optical trackingmotion camera systemw , as shown in Figure 3.

HoloLens RGB intrinsic camera parameters, as well as their radial and tangential lenses distortion coefficients
were determined by simultaneously solving a set of homogeneous system of equations by using nonlinear optimization
techniques [34]. This informationwere then posteriorly used in our application to remove image distortions, as well
as to redefine the frustum of theHoloLens virtual camera. Formore detailed information, we refer the reader to the
Chapters 6 and 9 of [35].

By using the computed HoloLens RGB camera extrinsic camera parameters, the relationships between the physical
and virtual reference framesT hc can be derived by the following matrix equation: T hc = T hwT

w
b
T bp T

p
c , as graphically

represented in Figure 3. Note that the calibrationmatrixT hc can be determined from a single image and, therefore, the
checkerboard-pattern is obviously not required to be in the operating room, since this procedure can be conducted
prior to the clinical application of the AR system. During the validation process, multiple images of the calibration board



M. E. DEOLIVEIRA ET AL. 7

were acquired to verify the variances of the computed transformations.

F IGURE 3 Orthonormal Basis (OB) h: HoloLens headset with passivemarkers attached to it in order to define its
position with respect to the physical world. OB s : surgical pointers reference frame used to digitize the
checkerboard-pattern and to define fiducial and/or anatomical landmarks, which are then used to represent the organ
of interest (e.g., femur and pelvis) with respect to the surgical frame. The transformationmappingT hc needed to be
determined is highlighted by a blue dashed line. Note that the HoloLens virtual camera is intrinsically related to the
user’s visual system (i.e., OB c).T pc : Transformation from the checkerboard-pattern to the HoloLens RGB camera.T wb :Transformationmapping the calibration board with respect to the physical world.T bp : Transformationmapping
between the digitized checkerboard-pattern with respect to the calibration board represented into the physical space.
T w
h
: Transformationmapping the HoloLens headset with respect to the physical world.T ws : Mapping between the

surgical pointer andworld reference frames.T bs : Mapping between the surgical pointer and the calibration board
reference frames.

2.5 | Application of the HE-basedmethod to computer-assisted orthopaedic surgery

In order to validate the proposed HE calibrationmethod for AR in computer-assisted orthopaedic surgery (CAOS), we
considered a full male pelvis model with acetabulum and cancellous inner structures (SKU 1301-1, Sawbones, Pacific
Research Laboratories, Vashon,Washington, USA) and a femur-tibia articulatedwith ligaments and cancellous inner
structures (SKU1145-1, Sawbones, Pacific Research Laboratories, Vashon,Washington, USA). Titanium fiducials screws
were implanted in thesemodels as shown in Figures 4(a) and 4(b). These twomodels underwent computed tomography
using a VCT scanner (General Electric Lightspeed VCT 64 rows system,Milwaukee,WI) assuming an interplanar spacing
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resolution of 0.63mm. Subsequently, these two datasets were segmented by using the commercial Mimics software
(Materialise NV, Leuven, Belgium). Isosurfacemeshes representing the cortical structures and their respective fiducial
markers were generated and were then exported in stereolithography format (STL, 3D Systems Inc, Valencia, Calif).
Finally, these isosurfacemeshes were imported and processed using the open source visualization toolkit library (VTK
8.1.0, Kitware, https://www.vtk.org/). In order to establish a correspondence between the physical and imaging
spaces, the followingmethodologywas applied: first, the nodes of thefiducialmarkers isosurfacemesheswere extracted
and clustered by using the K-mean clustering method [36], where the total number of clusters to be detected was equal
to the number of fiducial markers. Second, the detected clusters weremapped into the principal component space by
solving an eigenvalue decomposition problem based on the nodes’ spatial positions [36], where the directions of the
fiducial markers were associated with the first eigenvector. Last, the main axes directions were parameterized and their
respective intersections with the surfacemeshes representing the cortical structures were determined, as shown in
Figures 4(a)-4(c).

F IGURE 4 (a) and (b): Extracted cortical structures and fiducial markers meshes isosurfaces. The computed fiducial
markers main directions are represented by the four parametrized lines. (c) A X-Z projection of the clustered nodes with
their respectivemain axes are represented for the pelvis model. It is important to note that the color identification for
each detected cluster has its parametrized line in the same color. The intersections between thesemain directions and
their respective surfacemeshes were then used to determine an orthonormal basis in the image space, which has its
equivalent in the physical world represented into the surgical frame coordinate system.

2.6 | Establishment of correspondences between the physical and imaging spaces

Initially, a surgical framewas anchored to the organ of interest by using K-wires as shown in Figure 10. The developed
ARCAOS application forMicrosoft HoloLens was implemented using theMixed Reality Toolkit Library - Unity (https:
//github.com/Microsoft/MixedRealityToolkit-Unity). This application allows the surgeon to navigate among
different options, such as loading patient data, conducting calibration, establishing correspondences between the
physical and the virtual organs of interest based on fiducial or anatomical landmarks, and tracking rigid bodies by using
the extended Kalman filter. After loading the desired virtual content, a hologram of the desiredmodel emerges at one
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meter from themiddle of the camera viewport (user’s visual system). The user can thenmove the object in the physical
space by using simple hand gestures (i.e., by pinching the index finger and thumb together) andmove its hand towards
the desired position. Therefore, the model can be placed into a convenient position for the surgeon. When selecting the
option Establishment of Correspondences on themainmenu, consecutive landmarks representing fiducial or anatomical
markers will start to blink in the loadedmodel as previously defined in the preoperative phase and, by using the tracked
surgical pointer and a double-click gesture, each individual correspondence is established. The surgeon is also provided
with an audio feedback, ensuring that he/she wouldmove the surgical pointer to the next highlighted fiducial marker.
These fiducial markers are thenmappedwith respect to the surgical frame anchored into the organ of interest. After
finishing this procedure, an orthonormal basis is created in the physical space, which has its counterpart in the image
space and, therefore, a transformation can be determined tomap the hologramwith respect to the surgical frame.

2.7 | Accuracy assessment

The accuracy of the proposed HE-based method was evaluated by using a retro-projection error estimation (RPEE)
approach. As previously described, the checkerboard pattern was digitized by using the surgical navigation pointer
(Figure 2) and therefore, the position of each individual pattern (i.e., internal corners of the checkerboard pattern) was
determinedwith respect to the world reference frame by considering the estimated transformationmatrixT hc defined
in Section 2.4. Holograms representing the internal edges were created andmapped into the physical space. Since these
holograms representing the internal edges of the assumed checkerboard calibration object have their counterparts in
the real world, the root mean square error (RMSE) of the 2D representations of these hologramswere comparedwith
the acquired checkerboard images by the HoloLens RGB camera, where the latter is in agreement with the HoloLens’s
virtual camera. The inner checkerboard corners and the centers of the holograms representing the projected patterns
in the physical space were detected by using the opensource computer vision library (OpenCV, http://opencv.org). For
more details, we refer the reader to [37].

Finally, the variabilities of the estimated transformationmappings were assessed by using directional descriptive
statistics to quantitatively evaluate the accuracy and robustness of the HoloLens-SLAM algorithm and of the proposed
HE-basedmethod. The latter was considered since commonly used descriptive statistics on Euclidean space are not
appropriate for describing orthonormal rotations matrices. In this context, the orthonormal basis were assumed to be
lying on a compact Riemannianmanifold, which is the natural generalization of Euclidean spaces to locally Euclidean
spaces [38, 39, 40]. In this context, the uncertainties resulting from the computed transformationmatricesT hc for both
methods can be indirectly assessed by the circular and offset variances.

3 | RESULTS

3.1 | Quantitative assessment of the HoloLens SLAM-basedmethod

Preliminary investigations onmesh stability and reliability for the HoloLens SLAM-basedmethodwere qualitatively
and quantitatively evaluated by conducting Nearest Neighbour Distances (NNDs) analysis and the Hausdorff distances
(Hd ). The experiments were conducted on a rectangular room 16.9 m long, 8.2 mwide, and 3.7 m height, where the
mapping was conducted along a rectangular region of 10m long and 5mwide under quasi-static dynamic consideration,
as described in Section 2.1. Similarities between two consecutive surfacemeshes with the same inter-lap interval are
illustrated in Figure 5. Hausdorff distances as well as theminimum Euclidean distances and their statistical properties
were computed and, it was verified that no significant differences were observed after eight completed laps (M10,M7),
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as shown in Figure 6.

F IGURE 5 Qualitative assessment of convergences for mesh surfaces. It is important to note that only a specific
region of interest has been considered in this analysis. NNDs between two consecutive surfacemeshes are represented
by NND(Mn − Mn−1). No significant differences among consecutivemodels were found after eight completed laps.
Theminimum Euclidean distances are represented by scalars ranging from 0 to 10 centimeters for a better
representation of their variabilities.

All estimates for both evaluatedmethods were computed after ensuring that the HoloLens SLAM-based spatial
mapping converged to a high-quality triangulation surface model. The convergence criterion was defined as the
minimum numbers of complete laps capable of preservingmeshmodel geometric characteristics which are similar to
the characteristics observed in consecutively generated surfacemodels. In order to avoid the effects of new learned
features outside the region of interest (i.e, rectangular trajectory performed by the user wearing theHoloLens), all mesh
elements outside this region were not considered in the analysis, as shown in Figure 5. No significant differences were
observed after the 8th completed lap (M10,M7). For illustrative purposes, theHd andNNDs similarities measures are
illustrated for the first 10 completed laps, and all similarities were computed based on the 11thmeshmodelM11 , where
the NNDs are represented as box-plot distributions, while the Hd is represented by a cyan dashed-line, as shown in
Figure 6.
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F IGURE 6 Convergence analysis of the HoloLens SLAM-based spatial-mapping. The box-plots represent the NNDs
computed between themeshmodels f and i , where (Mf ,Mi ) represents the similarities computed between the final
state f and an intermediate state i . Each box-plot contains N = 53616 observations, which corresponds to the number
of nodes in themeshmodel f representing the converged region of interest surfacemodel. The dashed cyan line
represents theHd distances. After convergence amean and standard deviation of 0.032 ± 0.03m for the NNDs and a
Hd of 0.44mwere verified.

3.2 | Latency estimation

The procedure described in Section 2.2 for estimating the latency of the developed AR application is shown in Fig-
ures 7(a)-7(c). As it can seen, these results demonstrate that the proposedmethod of feature dimensionality reduction
is able to capture the mid-stance walking pattern spatiotemporal features in the third principal component, when a
self-selected comfortable walking speed is assumed. The peaks with greater amplitudes represent randomly performed
squats by the subject, whichwere aimed at improving the representation of the data into the principal component space.
The latency of the systemwas estimated by computing the differences between corresponding spatiotemporal events
detected in the optical-tracking and SLAM-based time-series,W and S , respectively. In our experiments, a latency of
49.84±0.98mswasmeasured.
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F IGURE 7 (a): Representation of the first 30 seconds of a randomly selectedmid-stancewalking pattern in the third
principal component (PC3). The blue and red time-series represent the third component (PC3) of the optical-tracking
W andHoloLens SLAM-based S position time-series and, the time-series were acquired at amean frequency of 58.76
Hz. The vertical blue and red lines represent the automatically detected spatiotemporal features for the
optical-tracking and SLAM-based times-series, respectively. (b) Inset highlighting the detected spatiotemporalW and S
events. (c) Box-plot representation of the estimated latencies N = 121.

3.3 | Quantitative reliability assessment of the virtual-physical mappingsT hc
The robustness and accuracy of the proposed HE-based and of the HoloLens SLAM–based calibration methods can
be observed qualitatively in the two-unit spheres shown in Figures 8(a) and 8(b), respectively. Mean axes deviations
distributions in degrees along theX-, Y,andZ-axes coordinates are represented in box-plot graphs in Figures 9(b) and9(b).
Considerably higher standard deviations for the offsets along the X-, Y-, and Z-axes were observed in the HoloLens
SLAMmethodwhen compared with the proposed HE-based calibrationmethod. These observations are quantitatively
summarized in Tables 1 and 2.
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F IGURE 8 (a): Directional statistics for the proposedHE-basedmethod. Randomly selected poses at different
radial distances from the calibration board, ranging from 0.5 to 1.5meters (N=10). (b): Directional statistics for the
HoloLens SLAM-based calibrationmethod assuming equally spaced time observations (N=205). Amore detailed
description can be found in Tables 1 and 2.

F IGURE 9 The light blue box-plots represent the variability observed in the proposed HE-basedmethod, while the
dark blue box-plots represent the variability of the HoloLens SLAM-basedmethod. (a):T hc translations Ox, Oy, andOz
offsets in millimeters along the x,y, and z axis coordinates, respectively. (b)T hc : Mean axes deviations along the X-, Y, and
Z-axes coordinates represented in degrees. The light blue box-plots are composed by ten random selected poses at
different radial distances from the calibration board. The dark blue box-plots are constituted by 205 equally spaced
time observations.



14 M. E. DEOLIVEIRA ET AL.

HE-based calibrationmethod
X − axi s Y − axi s Z − axi s

Axis offsets [mm] 19.74 ± 2.38 76.82 ± 3.83 −2.74 ± 1.96

Axis deviations [degrees] 0.37 ± 0.15 0.35 ± 0.17 0.17 ± 0.07

Circular v ar [rad] 3.18 × 10−6 4.18 × 10−6 6.25 × 10−7

Circular std [rad] 2.52 × 10−3 2.89 × 10−3 1.11 × 10−3

TABLE 1 Descriptive statistics for the proposed HE-based calibrationmethod (N=10), where v ar and std stand for
variance and standard deviation, respectively.

HoloLens SLAMmethod
X − axi s Y − axi s Z − axi s

Axis offsets [mm] 13.80 ± 56.37 −0.22 ± 40.77 −55.86 ± 20.75

Axis deviations [degrees] 6.10 ± 4.15 8.87 ± 4.68 6.30 ± 4.22

Circular v ar [rad] 2.60 × 10−3 3.31 × 10−3 2.69 × 10−3

Circular std [rad] 7.22 × 10−2 8.14 × 10−2 7.34 × 10−2

TABLE 2 HoloLens SLAM-based calibrationmethod descriptive statistics (N=205), where v ar and std stand for
variance and standard deviation, respectively.

Directional descriptive statistics are given for the proposedHE-based calibration andHoloLens SLAMmethods in
Tables 1 and 2, respectively. The HoloLens SLAM-based presented with a circular variance within an order of magnitude
of −3 radians along the X-, Y-, and Z-axes, while the proposed HE-basedmethod presented with a significantly lower
circular variance withmagnitude order less or equal ≤ −6 radians along the X-, Y-, and Z-axes. Thesemeasures describe
the spread of all possible estimated set of orthonormal basis representing a specific calibrationmatrixT hc . In this sense,
the robustness and accuracy of thesemethods can be interpreted as a function of its computed circular variances and
standard deviations. Therefore, lower circular variances indicate that the obtained basis vectors are concentrated
around their respectivemean directions, which is a highly desirable characteristic when determining an orthonormal
basis, whereas values close to 1 indicate orthonormal basis uniformly distributed in the unit sphere, which inevitably
results in less reliable estimates.

3.3.1 | Qualitative and quantitative assessment of the superimposed holograms in the
physical space

The surgical reference frame was rigidly anchored to the organ of interest by using Kirschner wires (K-wires). Con-
sequently, the implanted fiducial markers were mapped with respect to the surgical reference frame, allowing us
to determine a transformation mapping between the imaging (virtual) and physical spaces. Therefore, holograms
representing patient-specific anatomical models and surgical instruments can be represented in the physical space,
independently of patient’s position and orientation and in real time, as shown in Figure 10.
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F IGURE 10 (a): Full male femur-tibia with acetabulum and cancellous inner structures (Sawbones, Pacific Research
Laboratories, Vashon,Washington, USA). (b) Randomly selected pose from a full male pelvis model with acetabulum and
cancellous inner structures (Sawbones, Pacific Research Laboratories, Vashon,Washington, USA). (c) and (d):
Superimposed hologramswith their corresponding physical organs. The hologramswere generated from the extracted
isosurfacemeshes, which were then subsequently mappedwith respect to their respective surgical frames.

The accuracy of the proposedHE-based calibrationmethodwas assessed based on the RPEE approach described in
Section 2.7 by representing the detected inner edges of the checkerboard pattern with respect to the physical space.
Ten randomly selected poses at different radial distances from the calibration board, ranging from 0.5 to 1.5meters
were considered. This analysis showed a RMSE of 3.2 ± 1.6mm for a total of 150 different patterns (3x5 grid size and 10
poses). For illustrative purposes, a randomly selected calibration frame is shown Figures 11(a) and 11(b).



16 M. E. DEOLIVEIRA ET AL.

F IGURE 11 Retro-projection error estimation. (a): The green spheres are hologramsmapped into the physical
space by using the estimatedmappingT c

h
, where the red sphere is representing the origin of the checkerboard pattern

coordinate system. (b): Red circles represent the inner edges of the physical checkerboard calibration board. The blue
crosses represent the centers of the holographic spheres represented in the physical world. 2D holograms’ positions
were determined by extracting the green color spectrum based on RGB band-pass filter, consequently we have
converted the initial mask into a gray image, followed by an edge detection approach and finally the centers were
estimated by using the Hough transform.

4 | DISCUSSION

Despite not being the primary objective of this work, to the authors’ best knowledge, no other studies have systemati-
cally investigated neither the accuracy of the existing HoloLens-SLAMproprietary algorithm nor the system’s latency,
which we believe to be of special interest, since theMicrosoft HoloLens is currently considered to be themost suitable
Holographic headset for mixed reality applied to CAS [29]. It is important to note that the estimated estates of the
HoloLens virtual camera, as well as the environment modeling are based on stochastic multisensory data fusion: inertial
data (i.e., accelerometer, gyroscope, andmagnetometer) combinedwith the vision sensors (i.e., depth and environmental
understanding cameras). Consequently, its performance depends on the quality and amount of detected visual features
and assumed feature selection criteria, as well as the illumination conditions, geometry of the physical space, and
dynamic characteristics of the user wearing the device. For all these reasons, the accuracy of a specific hardware can
be determined only for a very specific set of variable conditions, and therefore, it cannot be easily generalized and
compared across different studies. A more accurate and precise assessment requires further studies involving real
and synthetic data, as well as amore detailed theoretical and practical analysis, which would be prohibitive since the
HoloLens-SLAMmethod developed by theMicrosoft is not freely and publicly available.

The reliability and accuracy of the estimated transformation matrices were quantified by linear and circular
variances, for the offsets and orthonormal basis, respectively. However, it is important to note that the two evaluated
calibrationmethods fundamentally differ from each other. The SLAM-basedmethod relies upon the pose information of
the virtual camera provided by the HoloLens, where on the proposed HE-basedmethod, the pose of the virtual camera
in the physical space is determined by using a vision-based approach. Subsequently, all physical objects are represented
with respect to the absolute reference frame h defined by the retro-reflectivemarkers placed on the HoloLens headset
(Figure 2) and are thenmapped to the virtual camera by applying the estimated calibrationmatrixT hc . The evaluated
twomethods are not homologous and, therefore, the estimated rotations and offsets cannot be compared against each
other.
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Based on our results obtained for the SLAM-basedmethod, themost significant variabilities for the offsets were
found in the X -,Y -, and Z -axes, subsequently ranked in descending order, which refer to the first, second, and third
principal components of the virtual trajectories mapped into the physical space by performing the principal compo-
nent analysis. TheHoloLens virtual camera is a left-handed coordinate system, however, these results should not be
interpreted with respect to the virtual camera left-handed coordinate system, but rather with respect to the physical
space right-handed coordinate system, where X -,Y -, and Z -axes are represented by green, red, and yellow arrows,
respectively, as shown in Figure 5. Our experiments were conducted in the environment shown in Figure 5, which is a
rectangular carpeted roomwith considerably larger dimensions when comparedwith common residential buildings
and without visual features on the floor, resulting in a sparse representation of near visual features. Therefore, the
localization of the virtual camera and the spacemapping weremainly determined by the depth sensor and, therefore,
the greater variabilities for X -,Y -, and Z -axes ranked in descending order are likely to be explained by the practical
range limitations of the depth sensing camera, which has an optimal range of 0.85-3 m. These variabilities can be
qualitatively observed in Figure 8(a) and are quantitatively summarized in Table 2. It is important to observe that these
results are associated to the reliability and accuracy of theHoloLens SLAM-basedmethod under very specific conditions
and, therefore, any calibration method relying on the SLAM-based trajectories would lead to lower accuracy of the
transformationmatrices estimates, which would then be revealed in the descriptive statistics analysis, as verified in our
results.

Geometrical distortions of the physical trajectories could possibly be induced indirectly by the system’s latency
and, consequently, resulting in non-optimal calibrationmatrices. For this reason, a quasi-static calibration approach
was considered, i.e., the user was instructed to walk at a self-selected comfortable walking speed. From the latency
quantification approach, we can infer that the evaluated physical and virtual trajectories are not distorted by the latency
and, therefore, ensuring spatiotemporal correspondences between the trajectories in the physical and virtual spaces.
For all these previously mentioned reasons, nonlinear inherited properties due to system’s latency can be neglected for
the estimates.

Optical multi-object tracking is an interactive process involving a number of different imaging and optimization
steps, such as background subtraction, image filtering, blob detection, 3D reconstruction frommultiple images based
on epipolar geometry, establishment of correspondences between different images and among consecutive frames,
occlusion handling, and data network streaming. For these reasons, the use of an external optical tracking combinedwith
OST-HMDs is inherently an iterative process, whichmay significantly affect the user’s experience based on very specific
conditions and applications and, consequently, its use in some clinical applicationsmay possibly be diminished, especially
in rapid surgical maneuvers, where the actions of the usermay not be time-lockedwith the renderization of the near-eye
multifocus dichromated-gelatin holographic lenses. The observed overall system’s latency was qualitatively satisfactory
and promising based on the evaluated theoretical premise. In order to reduce the system’s latency and to improve
tracking robustness, an extended Kalman filter (EKF) [41] was implemented, however, it has not been fully validated yet,
since the predictions of estates are sensitive tomodel parameters, e.g., state-transition and observationmodels and
their respective covariancematrices, which should be further investigated.

The current version of the HoloLens is not equippedwith eye-tracking technology and, therefore, after the user-
specific calibration process has been performed, the HoloLens headset uses the spatial mapping and localization
information to correctly display the digital content on its near-eyemultifocus dichromated gelatin holographic lenses
and, therefore, the immersive experience of the user is not drastically affected as in previously developed systems, since
both the depth camera and the IMU can accurately estimate the virtual camera’s posewith respect to near detected
large planes (e.g., floor, ceiling, andwalls), which are accomplished by the spatial understandingmodule API. Moreover, a
sophisticated hardware-assisted holographic technique called stabilization plane is performed, which is associated with
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motion and change of the point of viewwhen the usermoves its head or when the headset moves with respect to the
user’s head. This stabilization plane is automatically chosen by using the depth camera information to localize the gaze
intersection point with a physical or user-defined virtual object and, therefore, enhancing the immersive experience. It
is important to note that the relationships between the near-eyemultifocus dichromated gelatin holographic lenses and
the user’s eyes are not addressed in this work, assuming that this step has already been accomplished by the proprietary
calibration routine developed byMicrosoft Research, which is user-specific, and is tailored to a specific hardware by
themanufacturer [17, 18, 19, 20, 21, 22]. Recently, small gaze tracking cameras became available, which are expected
to be incorporated into AROST-HMDs in the near future, thus allowing a precise and robust estimation of the eyes’
localization and gaze directions. This additional information can then be used to improve the calibration process, since
no additional information or assumptions are needed to correctly display a hologram into the physical space with
respect to the user’s view.

5 | CONCLUSION

An important aspect to be emphasized in the use of AR in CAS is that such technology provides an instantaneous
qualitative assessment of the accuracy of the registration process between the surgical and imaging reference frames,
which is a highly desirable and needed feature that cannot be achieved by using the current available non-immersive
surgical navigation platforms. Anatomical landmarks or implanted fiducial markers aremanually digitized by a surgical
pointer during the surgical procedure, while in the imaging space are determined preoperatively by using different semi-
automated image-processing techniques. Therefore, the establishment of correspondences between the physical and
imaging spaces is cumbersome and prone to different sources of errors. These sources of errors cannot be decoupled
in the registration process and are subject to inter- and intra-observer variability [42]. Consequently, the qualitative
mismatch observed between the physical anatomies of the considered phantommodels and their respective holograms
cannot be attributed solely to the proposedHE-based calibrationmethod (Figures 10(a)-10(d)).

Our results shown that the developed platform is very intuitive, especially among inexperienced surgeons, since
surgical instruments and maneuvers are represented with respect to the surgeon’s visual system and, therefore,
attention disruptions aremore likely to be reduced, since patient-specific imaging and preoperative planning data can
be displayed on virtual monitors that can be placed and dynamically allocated according to the surgeon’s needs, allowing
the surgeon to be focused on the surgical field. In addition, this type of platform allows the surgeon to interact with
patient’s data and preoperative planning in amore natural fashion by using speech, hand gestures, and eye gazing.

The proposed HE-basedmethod provides reliable and accurate estimates for the transformationmatrixT hc , which
were qualitatively and quantitatively evaluated. Although the results are promising, the proposedmethod needs to
be further improved and clinically validated and, for these reasons, the authors believe that the use of theMicrosoft
HoloLens development edition should be carefully considered before it can be translated to a specific clinical setting.
However, the achieved precision by the proposedHE-based calibrationmethodmakes it suitable for a wider range of
clinical, educational, and industrial applications.
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