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Foreword 
 

This project is pretty extensive and requires a broad range of skills. Therefore 
it has been divided into several separate tasks. They were assigned to two 
participants considering their respective interests and expertise.  

• 3D design (Clementine Lo): modelling of the avatar and of the 3D 
environment  

• Real-time motion capture (Clementine Lo): capturing the motion in 
real-time with the Vicon 

• Networking (Clementine Lo and Caecilia Charbonnier): recovering 
the data from Tarsus (distributed application). This task involved both 
participants as it is the communication point between the Vicon (managed 
by Clementine Lo) and OSG (managed by Caecilia Charbonnier) 

• Development of an OSG application (Caecilia Charbonnier): 
loading and viewing the avatar and 3D environment; applying the motion 
capture data to the virtual avatar. 

• Mathematical calculations (Clementine Lo): calculating the 
transformations involved to correctly map the subject’s movements onto 
the avatar according to the mirror illusion; calculating the camera’s 
position and projection matrix 

• Implementation of mathematical results (Caecilia Charbonnier): 
implementing the different mathematical results in the code for the 
animation of the avatar and the camera transformation. 

A more detailed explanation of the organization of this project is given in 
chapter 1.2 

Of course, even though their work was distinct, both participants have a good 
understanding of all the techniques, tools and theories involved in this project. 
For instance one cannot implement a mathematical formula without 
understanding it and one cannot develop a mathematical solution without 
comprehending the underlying code.  

In order for the reader to understand the project as a whole, the work of both 
parties is described in this document. Nevertheless, the input of each contributor 
is made clear: 

Caecilia Charbonnier: blue font 

Clementine Lo: black font 

Common parts (introduction, conclusion, etc.): dark blue font 
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1. Introduction 
Cloth simulation has been a topic of intensive research for several years. At the 

University of Geneva, MIRALab1 has been involved in this field for over 15 years. After 
developing a state-of-the-art platform to create and animate garments (Fashionizer2), 
the group is now working on real-time cloth simulation. One of the challenging aspects 
of virtual clothing is its adaptation to the body motion: “dressing a virtual body involves 
designing complex garment shapes, as well as an advanced simulation system able to 
detect and to handle multiple collisions generated between the cloth and the body.”3 
When we buy a garment in a shop, we try it on and move in front of a mirror to test its 
fit. Therefore, it would be interesting to have a “virtual mirror” to be able to test this 
new real-time cloth simulation method. By using motion capture, the subject could “try 
on” different garments in the virtual world and see his/her avatar move with them on.  

 

 
Figure 1.1: 3D model with clothes created and simulated with Fashionizer (MIRALab)4 

 

1.1. Aim and objectives 

The goal of this project is to create a 3D application which will give the illusion of a 
“virtual mirror” by using real-time motion capture. As MIRALab is using 

                                            
1 http://www.miralab.ch 
2 N. Magnenat-Thalmann, F. Dellas, C. Luible, P. Volino, From Roman Garments to Haute-

couture Collection with the Fashionizer Platform, Virtual Systems and Multi Media, Japan, Nov, 
2004 

3 Ibid, p.1 
4 P.Volino, Collision Detection for Deformable Objects, Course Notes: Collision Detection and 

Proximity Queries, ACM SIGGRAPH’ 04, Los Angeles, p.19-37, 2004 
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OpenSceneGraph5 (OSG), a graphic library, to develop its real-time cloth animation 
application, the same toolkit is employed for this project. The subject’s movements are 
tracked using a Vicon6 optical motion capture system and are applied to a virtual avatar 
in real-time. The avatar is included in a 3D environment and the scene is projected on a 
big screen in front of the subject. The camera projection is calculated so as to give the 
impression of a “window” on a virtual world.  

This project involves various areas of 3D computer graphics and programming:  

• 3D design: modelling of the avatar and of the 3D environment 

• Real-time motion capture: capturing the motion in real-time with the Vicon; 
recovering the data from Tarsus, Vicon’s real-time engine (distributed 
application). 

• Development of an OSG application: loading and viewing the avatar and 3D 
environment; applying the motion capture data to the virtual avatar. 

• Camera transformation: updating the camera’s position in regards to the 
subject’s head position; calculation of the camera’s projection matrix to give 
the illusion of a window on another world. 

1.2. Organization 

The project started beginning of July 2006. On the programming side, the initial 
needs were to install OSG and build the skeleton of the application. The first month was 
mainly devoted to the animation of a virtual body with OSG. Meanwhile an initial version 
of the environment and virtual avatar was created.  Once we were able to load the 
virtual world and animate the bones of our avatar with OSG, we concentrated on the 
connection with the Vicon. We had to find a way to retrieve the animation data from the 
Vicon system and integrate it into the OSG application. Unfortunately our first tests with 
the motion capture were not satisfactory. Indeed, we didn’t take into account the 
different calculations needed to map the motion of the real body onto the virtual 
character. This mathematical aspect turned out to be the longest part of the project, 
involving many trials and errors. Finally, the last part of the project was dedicated to the 
camera implementation, the scene improvement and real-time optimization. We also 
tested the application with different subjects.  

 

                                            
5 http://www.openscenegraph.org 
6 http://www.vicon.com 
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Tasks Resources

Documentation (VICON, OSG, etc.) Caecilia, 
Clémentine

3D Design (scene, avatar) Clémentine

Real-time motion capture Clémentine

OSG animation and lights Caecilia

Mathematical aspects (animation and 
camera)

Clémentine

OSG Implementation of mathematical 
results

Caecilia

Tests and results Caecilia, 
Clémentine

Report Caecilia, 
Clémentine

M5 M6M1 M2 M3 M4

 
Table 1.2: Organization of the project by month 
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2. State-of-the-Art 
Motion capture as we know it today is a very practical and realistic way to animate 

virtual human bodies. It is widely used in medicine, sports, the entertainment industry, 
and in the study of human factors.7 Instead of hand animating the model, the 
movements of a real person are recorded and transferred to the virtual body. Different 
techniques are available. The more popular ones are electromagnetic trackers and 
optical motion capture systems.  

Although this modern technique only appeared at the end of the 1980’s, motion 
capture as a process of taking a human being's movements and recording them in some 
way is really nothing new. In the late 1800's several people analyzed human movement 
for medical and military purposes. The most notable are Marey and Muybridge (Figure 
2.1), who used photography. At the beginning of the 20th century, motion capture 
techniques were employed in traditional 2D animation. Disney and others used 
photographed motion as a template for the animator. The artist traced individual frames 
of film to create individual frames of drawn animation. 

  

 
Figure 2.1: Galloping Horse 1879, chronophotography by E. Muybridge8 

 

Motion capture is a very large topic. As our project only deals with real-time motion 
capture, we will focus on this aspect. Following, we propose an overview of the different 
techniques and applications developed in this field during the last 20 years. 

                                            
7 The Virtual Soldier Research Team (VSR) Program, End-of-Year Technical Report for Project 

Digital Human Modeling and Virtual Reality for FCS, Center for Computer-Aided Design, College of 
Engineering, The University of Iowa 

8 http://www.digitaljournalist.org/issue0309/lm20.html 
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From 1988 to 1992, motion capture was essentially used to animate puppets for 
television shows. In 1988, Jim Henson Productions9 (Figure 2.2), used this technique to 
animate a low resolution character called “Waldo C. Graphic” (Figure 2.3).  An actor was 
hooked to a custom eight degree of freedom input device (a kind of mechanical arm with 
upper and lower jaw attachments). He was then able to control in real-time the position 
and mouth movements of the virtual character. The computer image of “Waldo” was 
mixed with the video feed of the camera focused on the real puppets so that everyone 
could perform together10. 

 

       
Figure 2.2: J. Henson and his Muppets Figure 2.3: Waldo C. Graphic11 

 

Later, a light-weight upper-body exoskeleton was developed to track the movements 
of the upper torso, head, and arms so that actors could control computer characters by 
miming their motions. This suit was used in many projects, although it was not the ideal 
body tracking device due to the noise in the electronics and the encumbering nature of 
the exoskeleton12. 

Three years later, Videosystem, a French video and computer graphics production 
house, created a new real-time character animation system. Their first success was the 
daily production of “Mat the Ghost”. Using DataGloves, joysticks, Polhemus trackers, and 
MIDI drum pedals the puppeteers could interactively perform “Mat”. The computer 
generated model was then chroma-keyed with the previously-shot video of the live 
actors13. 

                                            
9 http://www.henson.com/ 
10 G. Walters, The story of Waldo C. Graphic, Course Notes: 3D Character Animation by 

Computer, ACM SIGGRAPH '89, Boston, p. 65-79, July 1989. 
11 http://muppet.wikia.com/wiki/Waldo_C._Graphic 
12 G. Walters, Performance animation at PDI, Course Notes: Character Motion Systems, ACM 

SIGGRAPH 93, Anaheim, CA, p. 40-53, August 1993 
13 H. Tardif, Character animation in real time, Panel: Applications of Virtual Reality I: Reports 

from the Field, ACM SIGGRAPH Panel Proceedings, 1991 
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Around 1992, SimGraphics14 developed a facial tracking system they called a “face 
waldo”. Using mechanical sensors attached to the chin, lips, cheeks, and eyebrows, and 
electro-magnetic sensors on a supporting helmet structure, they could track the most 
important motions of the face and map them in real-time onto computer puppets. The 
importance of this system was that one actor could manipulate all the facial expressions 
of a character by just miming the facial expressions himself. One of the first big 
successes with the “face waldo” was the real-time performance of Nintendo's popular 
videogame character, “Mario” for product announcements and trade shows (Figure 2.4). 

In the same year, Brad deGraf worked on the development of a real-time animation 
system which is now called Alive! (Figure 2.5). For one character performed with Alive!, 
deGraf created a special hand device with five plungers actuated by the puppeteer’s 
fingers. The device was first used to control the facial expressions of a computer-
generated friendly talking spaceship15. 

 

    
Figure 2.4: Mario animation with “face waldo” 16 Figure 2.5: Moxy: animated with Alive! 17 

 

Due to the great success of puppets animation, the motion tracking practice was well 
ensconced as a viable option for computer animation production. Commercial companies 
appeared and released various motion tracking systems, generally based on optical or 
magnetic technology. Polhemus18, Motion Analysis19, AR Tracking20, Ascension 
Technology21 (Figure 2.6) and Vicon (Figure 2.7) are the most renowned. 

                                            
14 http://www.simg.com/ 
15 B. Robertson, Moving pictures, Computer Graphics World, Vol. 15, No. 10, p. 38-44, October 

1992. 
16 http://archive.ncsa.uiuc.edu/Cyberia/VETopLevels/Images/Mario.gif 
17 http://accad.osu.edu/~waynec/history/lesson11.html 
18 http://www.polhemus.com/ 
19 http://www.motionanalysis.com/ 
20 http://www.ar-tracking.de/ 
21 http://www.ascension-tech.com/ 
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Figure 2.6: Magnetic motion capture system     Figure 2.7: Optical motion capture system 

 

As a consequence, motion capture has been an active research area during the last 
15 years. Researchers tried to simplify the calibration process required by commercial 
tracking systems and to improve the mapping of realistic motions.  

In 1996, Molet et al. proposed a very efficient method to capture human motion after 
a simple calibration22. This method is based on the magnetic sensor technology. The 
sensor data are converted in real-time into the anatomical rotations of a body 
hierarchical representation (Figure 2.8). Such a choice facilitates motion reuse for other 
human models with the same proportions. Their human anatomical converter was used 
in a wide range of applications from teleconferencing to the conception of behavioural 
animation.  

 

 
Figure 2.8: Performed and converted postures of a soccer motion (Molet et al.) 

                                            
22 T. Molet, R. Boulic, D. Thalmann. A Real-Time Anatomical Converter for Human Motion 

Capture, 7th EUROGRAPHICS Int. Workshop on Computer Animation and Simulation'96, Poitier, 
France, G. Hegron and R. Boulic eds., ISBN 3-211-828-850, Springer-Verlag Wien, p. 79-94, 
1996. 
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Later, they improved their system by including the multi-joint control. This method 
allows driving several joints using only one sensor23. As a result the model’s 
deformations are more realistic whilst the cost remains the same. However it can only be 
applied to joints that have clear interdependence 24 (i.e. when a variation of one joint 
implies a variation of the other joint, as for the spine for example). 

Using the same anatomical converter system, Nedel et al. improved the 
representation of the virtual human model by adding the simulation of anatomical 
muscles and bones25.  

Another method aiming at the reduction of the number of sensors was proposed by 
Badler et al. They created an interface that allows a human participant to perform basic 
motions using a minimal number of sensors26. They use only 4 magnetic sensors of 6 
DOF to capture full body standing postures in real-time and map them onto an 
articulated computer graphics human model (Figure 2.9). The unsensed joints are 
positioned by a fast inverse kinematics algorithm. The resulting postures are generally 
accurate, if not exact, representations of the actual posture. For high-fidelity motion 
recording, this is not good enough, but for most interactive applications it is an 
extremely useful technique.  

 

 
Figure 2.9: Sensor placement (Badler et al.) 

                                            
23 T. Molet, R. Boulic, D. Thalmann, Human Motion Capture Driven by Orientation 

Measurement, Presence, MIT, Vol.8,  N°2, p. 187-203, 1999. 
24 T. Molet, Z. Huang, R. Boulic, D. Thalmann, An Animation Interface Designed for Motion 

Capture, Proc. Of Computer Animation'97, Geneva, ISBN 0-8186-7984-0, IEEE Press, p. 77-85, 
June 1997. 

25 L. P. Nedel, T. Molet, D. Thalmann, Animation of Virtual Human Bodies Using Motion 
Capture Devices, Proc. 2nd Brazilian Workshop on Virtual Reality - WRV'99, p. 139-150, Marilia, 
SP, Brazil, November, 1999. 

26 N.I. Badler, M. J. Hollick, J. P. Granieri, Real-Time Control of a Virtual Human Using Minimal 
Sensor, Presence: Teleoperators and Virtual Environments, Vol. 2, Number 1, MIT, p. 82-86, 
Winter 1993. 
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Apart from the technical complexity of designing realistic human motion, another 
recurrent problem is the cost. The equipment to accurately track every body segment (or 
joint angle) of a human being can be very expensive.  

A solution to reduce costs and cumbersome of motion capture devices is to use video-
based tracking systems. With this technique, the reconstruction of human motion is 
based on the estimation and tracking of motion in image sequences using computer 
vision methods. Okada et al. proposed an interesting application which presents a few 
similarities with our project. They produced a virtual fashion show using real-time 
markerless motion capture27. Virtual models were animated according to the motion of 
the real models and were projected on screens during the catwalk. Furthermore, the 
avatars wore different clothing than their corresponding model. Obviously, the use of 
visible markers and sensors had to be avoided to preserve the beauty of the real show. 
Only pairs of cameras were used to estimate the postures (Figure 2.10).  

 

 
Figure 2.10: Overview of the virtual fashion show (Okada et al.) 

 

Nowadays, image-based tracking is a well-established branch of special effects for 
movies and product announcements. In augmented reality applications for example, 
tracking and registration of cameras and objects are required to combine real and 
rendered scenes. In this area, CVLab28 an active Swiss computer vision laboratory has 
presented many accurate solutions that work in real-time even under difficult 

                                            
27 R. Okada, B. Stenger, T. Ike, N. Kondoh, Virtual Fashion show using real-time markerless 

motion capture, ACCV (2), p. 801-810, 2006. 
28 http://cvlab.epfl.ch/research/augm/augmented.html 
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conditions29. Their 3D tracking algorithm is robust enough to track a human face, given a 
rough and generic 3D model. Virtual objects can then be added in a realistic way and in 
real-time (Figure 2.11).  

 

 
Figure 2.11: Example of 3D tracking face (CVLab) 

 

Although many problems are yet to be solved in the motion capture field, there is no 
doubt that this technology has become an essential tool, used in numerous and diverse 
applications. The most obvious are the game and entertainment industry, which use 
real-time technology for fun and profit (Figure 2.12 and 2.13).  

 

  
Figure 2.12: Anyone for Tennis, 1997 (MIRALab)  Figure 2.13: Live performance30   

  

However several other domains also employ this technique. In education, real-time 
motion capture has been used to provide distance mentoring, interactive assistance and 
personalized instructions. The military (Figure 2.14) have also conducted researches to 
simulate battlefields group training and peace-keeping operations. Motion capture is 

                                            
29 L. Vacchetti, V. Lepetit and P. Fua, Stable Real-Time 3D Tracking Using Online and Offline 

Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, Nr. 10, pp. 
1391-1391, 2004. 

30 http://www.ptiphoenix.com/application/animation/live_animation.php 
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even used in medical applications such as gait analysis (Figure 2.15), medical emergency 
training or phobia treatment (social phobia, arachnophobia, acrophobia, etc.). 

 

   
Figure 2.14: NASA zero gravity experiment31 

 

  
Figure 2.15: Gait analysis (MotionAnalysis32and Innsport33) 

 

                                            
31 http://zerog.jsc.nasa.gov/Other/Feb_12_2004_Robotic/subviewer.cgi 
32 http://www.motionanalysis.com/applications/movement/gait/gait.html 
33 http://www.innsport.com/MMRGaitNONAV.htm 
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3. 3D design  
While designing the 3D model and environment, we had to consider a few 

constraining factors. First of all, given that we are working on a real-time application, the 
rendering time has to be reduced as much as possible: the number of polygons has to 
be minimal and the lighting as simple as possible.  What's more, as of now, OSG only 
supports simple bitmap textures. We cannot apply any special rendering effects such as 
transparency, reflection or raytracing. For these reasons, our possibilities in getting a 
sophisticated result will be noticeably diminished. 

3.1. Modelling the avatar 

3.1.1. Body 

To create the body, we first used the Poser5 software from Curious Labs34. This 
program is specialised in human form modelling and animation. It has a database of 
several bodies with realistic textures and contours. As our major preoccupation is to 
keep a low resolution, we used a low polygon model from Poser4 (Figure 3.1). This 
model isn’t as realistic and smooth as the Poser5 models (Figure 3.2), but it has only 
3722 polygons whereas the very detailed model has 29’160 (excluding the head).  

 

     
Figure 3.1: Low polygon Poser4 model  Figure 3.2: High polygon Poser5 model 

We then exported this figure as a .3ds file and imported it directly into 3dStudioMax35 
(Figure 3.3). After optimising the hands, we obtained a model with 2894 polygons. 

                                            
34 http://www.curiouslabs.com 
35 http://www.autodesk.com 
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Figure 3.3: Poser body imported in 3dStudioMax 

 

3.1.2. Head 

In an attempt to achieve a more interesting model, we decided not to use the default 
Poser head. We used Poser’s Face Room to design an original face. (Figure 3.4) shows 
the interface of this tool. The user can visualize the 3D model in the central window as 
well as its texture. On the right side are the face shaping tools. These allow the user to 
modify a range of parameters for each face feature. For the nose for example, there are 
eight different parameters.  
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Figure 3.4: Poser Face room interface 

 

The final model was then exported as a .3ds file and imported into 3dStudioMax 
(Figure 3.5) to be attached to the body. As the number of polygons was much too high, 
we reduced it to 2141 polygons by using the MultiRes modifier (Figure 3.6).  We also 
modified the texture image to add some make-up: lip colour and grey shading around 
the eyes. 
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Figure 3.5: High resolution head in Poser (1) and 3dStudioMax (2 and 3)  

     
Figure 3.6: Low resolution head in 3dStudioMax 

 

3.1.3. Hair 

To complete the modelling of the avatar, we still had to add some hair. Unfortunately 
we couldn’t use a hair modelling system such as the Hair and Fur world-space modifier 
in 3dStudioMax8 or the ShagHair36 plug-in. These systems produce very realistic results 
(Figure 3.7) but they also require a lot of rendering time.  

 

    
Figure 3.7: Model with hair produced with ShagHair plug-in 

                                            
36 http://www.digimation.com 
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Hair modelling (geometry, density, distribution and orientation of each individual hair) 
and rendering (hair colour, shadow, specular highlights, varying degree of transparency 
and anti-aliasing) is a very complex process. In reality there are about 100’000 to 
150’000 hair strands on a human scalp. Their geometric form is that of a very thin 
curved cylinder with varying thickness. Thus, there are considerable difficulties in 
simulating hair. As said by Thalmann and al.: “huge number and intricacies of individual 
hair, complex interaction of light and shadow among the hairs, the small scale of 
thickness of one hair compared to the rendered image and intriguing hair to hair 
interaction while in motion.”37  Given that we are working in real-time, we cannot afford 
to spend so much computational time on hair simulation.  

For the same reason, the dynamic simulation of the hair will not be taken into 
account. By adding hair animation, we would also have to deal with the calculation of 
their movement for each frame (very complex, since a hair strand isn’t solid but bends 
as it moves), their collision with other objects and the self-collision of hair.  

In consequence, we opted for a very simple though not as aesthetically pleasing 
solution. We modelled a simple mesh and applied a texture to simulate the inter-
reflections (Figure 3.8). 

 

     
Figure 3.8: Head with hair in 3dStudio Max 

 

3.1.4. Skeleton and Skinning  

The creation of well-adapted skeletons is very important for the quality of the 
animation. Even a slight change can have a visible impact once the body is animated. 

In this project, we used a biped skeleton in 3dStudioMax and scaled it to fit the body. 
As mentioned, it is very important to scale each bone properly, to fit the mesh the best 
way possible. We then attached the bones to the mesh, defining which bones move 

                                            
37 N. Magnenat-Thalmann, S. Hadap, P. Kalra, State of the Art in Hair Simulation, International 

Workshop on Human Modelling and Animation, Seoul: Korea Computer Graphics Society, pp. 3-9, 
June 2002, p.1 
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which parts of the mesh. We used BonesPro38 to achieve this task because the method 
used to import the skinning in OSG is based on this plug-in. Indeed, as we will see in 
chapter 5.1.2, we use COLLADA to transfer our scene into OSG. For the skinning, a 
method was integrated into the COLLADA importer by our assistant, Etienne Lyard (see 
chapter 5.2.2).  

BonesPro allows us to visualize the influence each bone has on the mesh39 (Figure 
3.9). When necessary, modifications can be made with the Strength and Falloff controls. 
If a more detailed and precise adjustment is required, we can also work on the vertices. 
For each vertex we can adjust the percentage of influence of a particular bone.  
Although this can be long and tedious, it is crucial. The realism and quality of the 
animation greatly depend on it. 

 

 
Figure 3.9: Visualisation of the influence of the upper-arm bone 

 

3.1.5. Textures 

As previously stated, we can only apply simple textures, such as bitmaps in OSG. In 
order to obtain aesthetically pleasing results despite this limitation, we can use texture 
baking. To bake a texture means to convert into channel maps (color, bump, 
illumination, etc.) the material's texture as it appears in the lit scene40. In this way, 
effects which usually take a very long time to render (reflections, refractions, shadows 
etc.) are simply integrated into a bitmap. 

                                            
38  http://www.digimation.com 
39 http://www.rendernode.com/articles.php?articleId=69 
40 http://www.c4dcafe.com/reviews/R95/page2.html 
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Moreover, for the bitmap textures to be applied smoothly and seamlessly, we have to 
adjust the texture coordinates, i.e. specify how the 2D texture (Figure 3.10) will be 
“projected” onto the 3D object. A useful technique to do this is pelting41. It was inspired 
by a procedure traditionally used to stretch out animal hides for tanning. The user 
defines edges on the 3D object, which are then spread out. This pulls the entire system 
and flattens the coordinates (Figure 3.11). While working on texture mapping, we use a 
standard checker material to make sure that the coordinates are correct Figure 3.12). 
Figures 3.13 and 3.14  show the final model with initial texture (cannot be rendered in 
OSG) and final texture. 

 

   
Figure 3.10: Pina texture    Figure 3.11: Pina UV map 

 

  
Figure 3.12: Pina with chequered texture        Figure 3.13: Pina with initial textures 

                                            
41 Dan Piponi and George Borshukov, Seamless Texture Mapping of Subdivision Surfaces by 

Model Pelting and Texture Blending, Proceedings of the 27th annual conference on Computer 
graphics and interactive techniques, ISBN:1-58113-208-5, pp. 471–478, 2000 
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Figure 3.14: Pina final model 

 

3.2. Modelling the 3D environment 

Our goal was to create an original and modern environment. The “New York loft 
apartment” allowed us to produce a stylish setting while keeping things simple in order 
to meet the real-time requirements. To furnish it we decided to reproduce existing 
models from a designer called Teo Jakob42. We took exact measures of different items 
and modelled them in 3dStudioMax (Figure 3.15).  

 

  
Figure 3.15: Teo Jakob chair and 3D model 

                                            
42 http://www.teojakob.ch 
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As for the avatar, all the textures were then baked (Figure 3.16 and 3.17) with proper 
lighting in order to obtain a richer result without extending the rendering time (Figure 
3.18). 

 

    
Figure 3.16: Baked texture for the floor  Figure 3.17 Baked texture for the chair 

 

 
Figure 3.18: Final environment with baked textures rendered in 3dStudioMax 
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4. Real-time motion capture 

4.1. Vicon optical motion capture system 

In this project we first used an 8 camera Vicon 8i system. MIRALab then changed its 
system to a Vicon MX (still 8 cameras). As we will see later, this upgrade had a positive 
impact on the quality of our application. As for the software, we used Vicon iQ and 
Tarsus, Vicon’s real-time engine. 

Vicon is an optical detection system, which means the information is transferred to 
the computer without the need of any cabling. The only limitation is the area in which 
the subject can move. The cameras can only “see” a certain amount of space. Of course, 
this depends on the size of the room, the placement and the number of cameras used.  

How does a Vicon work? First of all, reflectors are placed on the subject’s body. They 
are usually positioned at the articulations, as these are the strategic points we need 
information about to recreate the subject’s movement. (Figure 4.1) shows the marker 
positions we used for this project.  

 

 
Figure 4.1: Markers on a subject 

 

These markers are small spheres covered with a reflective tape. They act as mirrors 
and appear much brighter to the cameras than the rest of the scene. Each camera emits 
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infrared light (Figure 4.2). This light wave hits the reflector, which sends it back to the 
camera. The camera records the information about its position in the 2D image and 
sends it to the computer. The Vicon Datastation (MXNet) controls the cameras and 
collects their signals. It then passes them to a computer on which the Vicon software 
suite is installed (Figure 4.3). The Workstation, which is the central application of the 
Vicon software, takes the 2D data from each camera and combines them with the 
camera coordinates and other camera’s views to obtain the 3D coordinates of each 
marker for each frame. Roughly speaking, each camera sends rays to each marker and a 
reconstruction is made where two or more rays intersect. The positions of each marker 
in each frame are then combined to obtain a series of trajectories, representing the 
movement of the markers throughout time. In the case of real-time motion capture, all 
these reconstructions are managed by the real-time engine: Tarsus. 

 

           
Figure 4.2: Vicon MX camera   Figure 4.3: Configuration used in this project 

 

In the ideal case, the resulting trajectories should be smooth and continuous. 
Unfortunately, most of the time, at least one of the following problems occurs. If a 
marker isn’t seen by at least 2 cameras, the software will not be able to calculate its 
position. This phenomenon is called occlusion and results in broken trajectories: the 
system does not know where a marker is during a certain number of frames. Another 
problem often encountered is crossover. This happens when two markers are too close 
to each other. The system confuses one with the other, causing very weird animations. 
In other cases the software produces trajectories that should not exist. These are called 
ghost markers and result from reflection of spotlight or flashing material. For this reason, 
any shiny material (jewels, watches, shiny fabrics, pins, nails, etc.) should be kept away 
from the motion capture space.  
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4.2. Real-time motion capture with Vicon 

4.2.1. Calibration of the system 

Before starting any movement recording, we need to calibrate the system. This is an 
essential step, as it plays a considerable role in minimizing the error in the resulting 
data. It measures the position and orientation of the capture volume and the location of 
each camera relative to the others. This information is used by the Vicon software when 
recreating the 3D coordinates with the 2D data sent by the different cameras. 

System calibration involves two steps. First, the static calibration sets and locates the 
origin and the directions of the global axes of the motion capture space (Figure 4.4). In 
this project, we have to use a specific position for the origin. Indeed, as we will see in 
chapter 6, we need the coordinates of the projection screen in regards to the Vicon 
origin to recreate the mirror illusion. Second, the dynamic calibration allows the system 
to calculate the relative positions and orientations of the cameras (Figure 4.5). 

 

       
Figure 4.4: Static calibration    Figure 4.5: Dynamic calibration 

 

4.2.2. Calibration of the subject 

Next we have to calibrate the subject to let the computer know “who” the subject is. 
Vicon iQ has a particular approach to handling and processing motion capture data. One 
of the more important concepts is that of the Subject. “This is simply the definition and 
collection of statistics about a known subject that is going to be captured. This definition 
includes bones, joints, degrees of freedom, constraints and how markers relate to the 
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kinematic model.”43 The more information iQ has, the better it will understand the 
subject and the higher the quality of our capture will be. There are two different kinds of 
subjects: the VST (Vicon Skeletal Template) and the VSK (Vicon Skeletal Kinematic). The 
VST is a generic model specifying the general position of the markers and number of 
bones and joints (Figure 4.6). The VSK is the calibrated model. It is specific to a 
particular character in the real world given a Range of Motion (ROM).  

 

 
Figure 4.6: Generic skeleton and marker positions used in this project.  

 

                                            
43 VICON, Vicon iQ 1.5 Tutorial 1 : Subject Calibration, p.5 
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The marker setting we used implies a set of rules that have to be followed when 
fixing the markers (Figure 4.7). These rules will help iQ to make a better fitting between 
the generic skeleton and the real subject. Indeed, during the calibration process, iQ will 
automatically adapt the VST to the real world actor and produce a VSK. 

 

 
Figure 4.7: General rules for marker positioning 

 

First, the actor has to adopt a T-posture (Figure 4.8), in which all the markers are 
visible. As this is a known pose for the Subject Calibration Process, it will be able to scale 
the generic skeleton and align certain joints to fit the particular subject. Next, the actor 
has to move his/her arms and legs and perform a Range of Motion. The information thus 
collected allows iQ to estimate the skeleton’s configuration even though all the markers 
are not visible (the most plausible compared to the subject’s calibration moves).  
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Figure 4.8: Subject in calibration T-posture 

 

In the case of real-time motion capture, the calibration has to be done with extra 
care. Indeed, there will be no post-processing of the data. We will not have the chance 
to remove and/or correct any of the artefacts described in chapter 4.1 (ghosts, 
occlusions, crossover, etc). Our initial capture has to be as high-quality as possible. By 
making sure everything is well calibrated we ensure that the system will track the 
trajectories as accurately as possible. 

4.2.3. Tracking of the movements 

Once all the calibrations have been done, we can start capturing movements. Vicon 
iQ incorporates a real-time data visualization mode. In this mode the user can connect, 
set up and manage the Vicon real-time engine: Tarsus.  

Once Tarsus is launched, it retrieves the camera data from the Datastation and the 
processing options from iQ. It then performs three sequential but very rapid processing 
stages:  

• Reconstruction of 3D points from 2D camera images. 

• Identification of the markers, or auto-labelling, including distinguishing 
multiple characters. 

• Application of a globally optimised biomechanical model to generate skeletal 
based data directly applicable to your character.44 

 

                                            
44 http://movement.nyu.edu/projects/nyulab.html 



Caecilia Charbonnier and Clementine Lo     December 2006 

  

 

MIRALab - University of Geneva 31 MAS thesis 

4.3. Networking 

Now that we understand how to capture motion in real-time using Vicon, we still need 
to set up a connection between our program and Tarsus in order to retrieve the 
captured bone’s positions. The communication uses a client/server paradigm and takes 
place through TCP/IP (Stream Sockets). Let us first quickly overview these different 
concepts. 

4.3.1. Concepts 

 Different applications can be connected by sending data on a network. However a 
set of communication rules has to be defined: this is called a protocol. The most 
commonly used is the Transmission Control Protocol (TCP). It uses TCP sockets or 
Stream Sockets to establish a connection between applications and allow a transfer of 
data streams. The connection is identified by the socket addresses (machine’s IP address 
and predefined port) of both parties (Figure 4.9)45. 

 

 
Figure 4.9: TCP socket connection 

 

The client/server paradigm is a standard model used by network applications. When 
the server is connected it waits for requests coming from different clients. When a client 
needs the data, it connects to the server and sends a request. If it is accepted, the 
server sends the requested information (Figure 4.10).  

                                            
45 D. Konstantas, « Infrastructure de communication » Master course, University of Geneva, 

February 2005. 

IP : 158.108.33.3 IP : 158.108.2.71 

client server 
connection 

Port : 3000 Port : 21 

Client : 158.108.33.3, 158.108.2.71, 21 

Server : 158.108.2.71, 158.108.33.3, 3000 
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Figure 4.10: Client-server protocol (TCP) 

 

4.3.2. Tarsus communication protocol 

In our case, the server is the Vicon real-time engine (Tarsus) and the client is our 
application. The client connects to a server socket on a predefined port (800). It sends a 
request for information. Tarsus replies with an array of strings providing the names of 
the various channels. Thus the application knows what data is contained in each 
channel. The client then repetitively sends a request for data to which the server replies 
with a sequence of doubles. The position of each value indicates which channel it 
corresponds to.  

 Tarsus provides information on the position of both markers and bodies. These 
represent the joints defined in the VSK (see chapter 4.2.2). In this project, we use the 
bodies’ information. For each body there are 6 different channels: the angle-axis rotation 
around each axis and the translation down each axis in world coordinates. 

Our application then simply has to parse this data and convert it to get the transform 
matrix for each body. 
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5. OSG development 
As previously stated, this project was developed in OSG. We will now analyse the use 

of this toolkit more thoroughly. 

5.1. Building the viewer 

5.1.1. General principles 

The OpenSceneGraph (OSG) is an open source high performance 3D graphics toolkit, 
used by application developers in fields such as visual simulation, games, virtual reality, 
scientific visualization and modelling. Written entirely in Standard C++ and OpenGL46 it 
runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris, HP-Ux, AIX and FreeBSD 
operating systems. This toolkit is entirely based on scene graphs47 (Figure 5.1).  

 

 
Figure 5.1: Scene graph architecture 

 

A scene graph holds the data that defines a virtual world. It is an advanced approach 
defining the 3D scene, the display and sometimes the interactions with the user. It 
includes low-level descriptions of object geometry and their appearance, as well as 
spatial information, such as specifying the positions, animations, and transformations of 

                                            
46 http://www.opengl.org/ 
47 J. Rohlf and J. Helman, IRIS performer: A high performance multiprocessing toolkit for real–

Time 3D graphics, p. 381–395. 
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objects. Furthermore, it contains additional application-specific data. Scene graph data is 
encapsulated in many different types of nodes (basic element of a scene hierarchy) 
(Figure 5.2). For example, one node might contain the geometric data of an object; 
another node might contain the transformation for that object to orient and position it in 
the virtual world. The nodes are associated in a hierarchy that is a directed, acyclic 
graph. Using scene graphs has the advantage of structuring the elements of the virtual 
world and optimizes the rendering by filtering the amount of data sent to the graphic 
pipeline. Therefore it is less time-consuming and especially suitable for real-time 
applications.   

 

 
Figure 5.2: Example of scene graph organization with different types of nodes 

 

OSG is built on top of OpenGL and provides a simple viewer to display the 3D virtual 
scene. The whole graphic pipeline to render the scene is directly embedded in the 
library. At each time-step, the scene graph is traversed and the objects in the view 
volume are drawn. In addition, OSG is quite flexible. There are 45 plug-ins in the core 
OpenSceneGraph distribution. They offer support for reading and writing both native and 
3rd Party file formats (Table 5.3).  

 

3D Movie and image Archive/networking Pseudo loader 

3dc, ac3d, directx, dw, 
flt , geo, Inventor, ive, 
lib3ds, logo, lwo, lws, 

md2, obj, osg, pfb  

tga, tiff, quicktime, rgb, 
pic, png, pnm, bmp, 
gif, jpeg, mpeg, etc. 

osga, txp, net, zip, tgz, 
osgtgz 

rot, scale, stl, 
trans 

Table 5.3: List of available extension formats48 

                                            
48 http://www.openscenegraph.org/osgwiki/pmwiki.php/UserGuides/Plugins 
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As the environment and the virtual avatar are designed with 3dStudioMax, we cannot 
use any of the previously described plug-ins. Indeed, none of them supports high-level 
information such as skinning data. Therefore, we decided to use the COLLADA file 
format. 

5.1.2. COLLADA file importer 

COLLADA is a COLLAborative Design Activity for establishing an interchange file 
format for interactive 3D applications. It defines a standard XML schema49 for data 
interchange. Originally established by Sony Computer Entertainment50 as the official 
format for PlayStation 3 and PlayStation Portable development, COLLADA continues to 
evolve through the efforts of the Khronos51 contributors. Dozens of commercial game 
studios and game engines have adopted the standard. 

COLLADA supports features such as character skinning and morph targets, rigid body 
dynamics and shader effects for multiple shading languages. Solutions exist to transfer 
data from one Digital Content Creation (DCC) tool to another. Supported DCCs include 
Maya (using ColladaMaya), 3dStudioMax (using ColladaMax), Softimage XSI and Blender. 
Game engines, such as Unreal engine and the C4 Engine, have also adopted this format. 

The structure of a COLLADA document contains a header, a set of libraries and a set 
of scenes (Figure 5.4). The libraries hold and organize many types of objects 
(<animation>, <camera>, <controller>, <geometry>, <material>, <light>, etc.) and 
the scenes describe the hierarchy or scene graph of objects in the same space. All 
objects in the document can be managed using meta-information.  

 

 
Figure 5.4: Structure of a COLLADA document52 

                                            
49 http://www.xml.com/ 
50 http://www.scee.com/index.jhtml 
51 http://www.khronos.org/collada/ 
52 http://www.khronos.org/collada/presentations/collada_siggraph2005.pdf 
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In our application, COLLADA is used to export the environment and the character 
from 3dStudioMax via the ColladaMax plug-in. Once the scene is exported, we need a 
converter to read the generated XML schema in OSG. For that purpose, a COLLADA 
importer is available. It is compiled in a dynamic link library (.dll) and is readable by OSG 
(Figure 5.5). To load the scene we merely invoke its COLLADA file in a simple routine. 

 

 
Figure 5.5: The pipeline from 3dStudioMax to OSG 

 

5.2. Character animation 

5.2.1. Animation with OSG 

In 3D graphics, animation techniques are incredibly varied. Keyframing, parametric 
interpolation, procedural animation, motion capture, etc. are all well known. Each of 
these methods has advantages and drawbacks, but some are not suitable for real-time 
animation53.  

In this project, we use motion capture to record the user’s movements, which then 
have to be applied to the virtual avatar in real-time. We already considered the motion 
capture aspect in chapter 4; we will now focus on the animation of the virtual character.  

First, let us clarify how the animation works in OSG. OSG uses the animation path 
technique. This method consists in building the trajectory of an object using a path 
object. The path object defines the animation path that a particular object follows 
(Figure 5.6). It contains all the information about the object’s position, orientation and 
scale at each time-step. The translation and scale are represented by a 3-vector and the 
rotation by a quaternion. 

 

 

                                            
53 L. Moccozet, « Facial and Body Animation » Master course, University of Geneva, May 2006. 
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Figure 5.6: A cube with its animation path over time 

 

To assign a path to a specific object, we must retrieve its corresponding node in the 
scene hierarchy. Once we have a pointer to this node, we go down a few levels to find 
its world transform matrix (4x4 matrix). We add the animation path to this transform 
node. The final result gives the current spatial state of the object. 

Now that we understand how OSG manages basic animation, we will consider the 
animation of a virtual character. 

5.2.2. Skinning and general concepts 

To animate virtual characters and particularly vertebrates, skeletal animation is a 
technique widely used in computer animation. A character is represented in two parts: a 
surface representation used to draw the character (called the skin) and a hierarchical set 
of bones used for animation only (called the skeleton). 

The skeleton consists in a series of bones connected together by joints. Each joint has 
a transformation (up to 3 DOF and usually stored as transform matrix) and an optional 
parent bone. The full transform of a child node is the product of its parent transform and 
its own transform (see chapter 6.1). As a result, the skeleton forms a hierarchy (Figure 
5.7) where the root is a joint with 6 DOF. For example moving a thigh-bone will make 
the lower leg move too. When the character is animated, the joints change their 
transformation over time, under the influence of some animation controller. 

 

t2 

t0 t1 
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Figure 5.7: Hierarchy structure of a Biped skeleton 

 

As a final result, we want to animate the surface representation of the body, so let us 
explain now how the bones influence this process. Each bone is associated to a part of 
the character's visual representation (mesh). It is what we call skinning54. For a 
polygonal mesh character, the more widespread method is to assign a group of vertices 
to each bone. For example, an upper-leg bone would be associated with the vertices of 
the model's thigh. Vertices can usually be associated to multiple bones. The influence of 
each bone on each vertex is defined by a scaling factor called vertex weight, or blend 
weight (Figure 5.8).  

 

 
Figure 5.8: Skin in T-pose (left), skeleton in T-pose (middle) and vertex weights map (right)  

                                            
54 N. Magnenat-Thalmann, R. Laperrière, D. Thalmann. Joint-Dependent Local Deformations 
for Hand Animation and Object Grasping. Proc. Graphics Interface'88, Edmonton. 1988. 
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To calculate the final position of a vertex, we have to apply each bone’s 
transformation to its initial position. In order to take into account the vertex weights, 
these transformations are previously scaled regarding their corresponding weight. This 
algorithm is called matrix palette skinning, because the set of bone transformations form 
a palette which the skin vertex can choose from. 

In OSG, the process to animate virtual characters is the same as for simple objects 
(see previous section). We must first retrieve all the bone nodes in the scene graph. An 
animation path is then assigned to the transform node of each bone. At every time-step, 
the skin updating routine is called. This skinning method was entirely integrated by our 
assistant, Etienne Lyard, in the COLLADA importer.  

5.2.3. Application structure and management 

Let us take a closer look at the application structure. The program contains 3 major 
classes: 

• viewer.cpp  displays the virtual environment 

• tarsus.cpp retrieves the real-time animation data from the Vicon  

• bipedAnim.cpp updates the character animation  

To manage these 3 classes, we created two threads. The first takes care of the 
display and the virtual character animation. The second retrieves the new data from the 
motion capture real-time engine (Figure 5.9).  

 Both threads need to have access to the data sent by the Vicon, hence the use of a 
global variable to store the incoming transform matrix. It will then undergo different 
mathematical calculations which will be explained in chapter 6. Finally the position, scale 
and quaternions are extracted from the final matrix and applied to the OSG animation 
path.  

 

 
Figure 5.9: Collaborative diagram of the application 
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5.3. Configuration file 

For our program to be more flexible, we decided to create a configuration file. If the 
scene, avatar skeleton or an IP address changes, the user should still be able to use our 
program without having to change the source code. Therefore, all variable parameters 
are stored in the configuration file (see annex 1): 

• IP Address of the machine running Tarsus 

• Name of the COLLADA scene file (3D environment and avatar) 

• Name of the root of the bones hierarchy (for a 3dStudioMax biped: BIP01) 

• Names of all the other bones 

• Position (x, y, z) of the bottom left corner of the screen in the 3D environment 

When the application starts, the system asks for a configuration file with the 
extension: .pina. It can then update all these parameters accordingly. 
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6. Mathematical aspects of the animation 

6.1. Global and relative coordinates 

OSG works with relative coordinates: the matrix for each node expresses its relative 
position regarding its parent node. Therefore, we have to convert the global coordinates 
into relative ones (Figure 6.1). The formula to do this is pretty simple: 

 

childparentrel ΜΜ=Μ −1
 

 

Mchild is the global matrix of the child joint. 

Mparent is the global matrix of the parent joint. 

 

 
Figure 6.1: Global and relative coordinates 

 

We can also calculate the global matrix of a joint according to its relative one: 

relparentchild ΜΜ=Μ  

NB: If we do not have the global matrix of the parent, we can find it by applying this 
formula recursively: 

relrelreltroochild ΜΜΜΜ=Μ 12...  

Mparent 

Mchild 

Mrel 
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6.2. Mirror illusion: symmetry and position in the virtual world 

When looking through a mirror, the image we perceive is that of an identical human 
being positioned at an equal distance from the mirror in a symmetrical way (Figure 6.2). 
To achieve this illusion in 3D, several transformations have to be taken into account.  

 

 
Figure 6.2: Mirror illusion 

 

The most obvious of course is the symmetry. When the model in the real world 
moves its left arm, the avatar has to move its right arm. Therefore, a symmetry matrix 
has to be applied to the whole animation. 

 

 
Figure 6.3: Mirror illusion matrix transformations 
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Also we need to create a correspondence between the two worlds. The position of 
the virtual human (MV) has to be calculated  by taking into account not only the real 
human’s position (MR) but also the mirror’s position (Figure 6.3). To achieve this, we use 
a point that is the same in both worlds and for which we have the coordinates in both 
worlds: namely a point on the “mirror” (projection screen). For obvious practical 
reasons, we used the bottom left corner. We measured its position in the real world 
(MmirrorR). Its position in the virtual world (MmirrorV) is given to us by 3dStudioMax.  

The symmetry is applied to the matrix of the “real” model in mirror coordinates and 
then converted into the virtual world coordinates. 

The final formula: 

 

( )[ ]RmirrorRsymmmirrorVV ΜΜΜΜ=Μ −1
 

 

6.3. Symmetry with quaternions 

6.3.1. A naïve approach 

After we implemented the transformations described in the previous section, the 
virtual model didn’t take into account rotations around the z-axis. We realized that when 
we apply symmetry to such rotations they don’t turn in the same direction. 

 Since the matrix calculation was correct, we thought the problem might come from 
the retrieval of the quaternions (as described in chapter 5, OSG uses quaternions to 
apply rotations in the animation.)  

First of all, here are a few formulas describing quaternions and their correspondence 
with a rotation matrix: 

Here is the rotation matrix for a rotation around z of angle θ: 
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The corresponding quaternion is given by: 
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Therefore, the matrix can also be written as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=Μ
22

22
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2212222
2222122
2222221

basabcsbac
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Rθ  

 

Now, let us take an example to see what happens to the quaternions when we apply 
symmetry to a rotation around the z-axis.  

Here is a transformation matrix with a translation of -3 along the x-axis and 2 along 
the y-axis and a rotation of 90 degrees around z: 

⎥
⎥
⎥
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⎦
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⎢
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⎢
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⎣
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If we apply a symmetry along the y-axis, we have: 
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We can notice that the upper 3X3 matrix is not a rotation matrix anymore. Therefore, 
it cannot be transformed into quaternions! If we express this matrix regarding its 
correspondence with a quaternion we get: 

 

   

1221022022
0220221122
0221220221

22

22

22

=−−=+=−
=−=−−−=+
=+−=−=−−
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The contradiction is obvious.  
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6.3.2. A better approach 

To solve this problem, we simply added an initial matrix. This matrix is the result of 
the “mirror correspondence” explained in chapter 6.2: 

 

( )1−ΜΜΜ=Μ mirrorRsymmmirrorVinit  

 

  It is included in the scene graph before the root node of the bones hierarchy (Figure 
6.4) instead of being added while updating the animation. Thus the animation routine 
can be computed normally whilst the virtual avatar will still be displayed symmetrically.  

Adding this init matrix or mirror matrix involves retrieving the root node of the bones 
hierarchy. The name of the root joint is in the configuration file (see chapter 5.3), so we 
merely have to run through the OSG hierarchy and find the corresponding node. This 
process is done only once when loading the program. This solution hence reduces the 
computational cost, which is a noticeable improvement for a real-time application. 

 

 
Figure 6.4: Position of the mirror matrix in the OSG hierarchy 

OSG Root 

       Mirror matrix 

Bones 
hierarchy 

Root Joint 
Environment 



Clementine Lo     December 2006 

  

 

MIRALab - University of Geneva 46 MAS thesis 

6.4. Pivots 

6.4.1. Pivots orientation 

The biped pivots in 3DStudioMax all have different orientations. So if we update the 
animation in OSG directly with the matrix given by the Vicon, it isn’t applied correctly: 
the axes are not in the right direction. To solve this problem we have to add another 
matrix transformation. Even though their pivots don’t have the same orientation, the 
transformation applied to a bone from timet0 to timet1 in the virtual world has to be the 
same as that of its corresponding bone in the real world (Figure 6.5). 

To simplify our calculations and since we have already dealt with this matter in sub-
chapter 6.1, we will use the same coordinate system for the virtual world and the real 
world.  

 

 
Figure 6.5: Relative transformation in real and virtual world 

 

In order to match the biped to the Vicon data, we need a calibration posture. The 
subject and the virtual human are in the same position during the calibration. We can 
then calculate the relative position for each animation frame.  We will now go through 
the whole process more thoroughly. 

6.4.2. Calibration 

During the calibration process, the program stores the global matrices for each bone 
of both the real and the virtual model.  For the real model, these are given by the Vicon 
(MRCalib). For the virtual model, they have to be recalculated from the local matrices in 
the OSG hierarchy (MVCalib), (see sub-chapter 6.1). 

REAL WORLD VIRTUAL WORLD 

Mirror

T1

 
T2 
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6.4.3. Animation 

To animate one of our virtual model’s bones we need its new global matrix (MV). We 
will then convert it to the local matrix (see sub-chapter 6.1) before updating the 
corresponding bone in OSG.  

To obtain an accurate animation, the relative transformation from the calibration pose 
to the animation pose for each frame has to be the same for the real (MRrel) and the 
virtual model (MVrel) (Figure 6.6).  

 

 
Figure 6.6: Relative transformation correspondence 

 

The Vicon gives us the new global matrix of the real model (MR). We can then 
calculate the relative transformation: 

RRcalibRrel ΜΜ=Μ −1
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Since MRRel should be equal to MVRel we should have:  

RrelVcalibV ΜΜ=Μ  

 

But this is not the case given that the pivots have different orientations. Indeed the 
translations will then be applied on the wrong axis.  

Let us consider a translation of 2 on the x-axis and a rotation of -90 degrees around 
the z-axis. 

⎥
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The virtual calibration matrix is a translation of 2 on the x-axis, –1 on the y-axis and a 
rotation of +90 degrees around the z-axis. 
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We should have the final global transformation matrix (MV) as a translation of 4 on 
the x-axis, -1 on the y-axis and no rotation. But if we calculate the matrix multiplication 
we get: 
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The translations are not what we expected (2 on the x-axis and -2 on the y-axis).  

 

 

 

 

 



Clementine Lo     December 2006 

  

 

MIRALab - University of Geneva 49 MAS thesis 

Indeed when one multiplies two matrices this is what happens: 

( )( )
( )( )

( ) [ ]( )2112121

222

111

TRTRR
TR
TR

+=ΜΜ
=Μ
=Μ

 

 

The translation is applied relatively to the previous matrix’s rotation, which is not 
what we want. We would like to have: 

( )( )212121 TTRR +=ΜΜ  

 

For this reason we have to apply the translations and rotations separately. Finally we 
get: 

 Rotation:   RVcalib
T

RRcalibRRRV ΜΜΜ=Μ  

           TVcalibTRcalibTRTV Μ+Μ−Μ=Μ  

 

As the rotations in OSG are expressed in quaternions, it would be simpler to multiply 
quaternions instead of matrices. Indeed “the composition of rotations is given by the 
multiplication of the corresponding quaternions”55. Given two quaternions: 

kzjyixwq
kzjyixwq

11111

00000

+++=
+++=

 

 

The multiplication of q0 and q1 is: 
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55 G. Guillard, Un espace de représentation pour l’étude conjointe de la morphologie et de la 

fonctionnalité des surfaces articulaires, Université de Rennes, 2005, p.58 
 

Translation: 
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6.5. Conclusion and implementation 

To conclude, we have to put all these formulas together. We will summarize the 
situation by examining the implementation. But before that, let us notify a particularity in 
OSG: the transposition of the matrices. When first implementing the formulas, we 
reported errors because OSG uses transposed matrices. It means that all matrices 
calculation must be done in reverse. For example, if you want to multiply A by B, you 
usually post-multiply A with B but in OSG you must pre-multiply. The matrix 
multiplication is not commutative (that is AB≠BA), so we obtained surprising results!  

 

Here is how the program proceeds (an abstract of the code is provided in annex 2): 

1. When the application starts, the system asks for a configuration file which 
gives all the parameters required to run the program (joint names, root joint, 
virtual mirror’s position, etc.) 

2. The 3D virtual scene is loaded. 

3. The mirror matrix is added on top of the root node. 

4. The OSG hierarchy is traversed and with the joint’s names we retrieve the 
corresponding nodes. For each node, we go down a few levels to find its 
world transform matrix.  

5. The system requests and retrieves information data of the various channels. It 
then waits for the user to start the calibration. 

6. When the user presses the ‘c’ key, the calibration starts. The program stocks 
the global transform matrices for each bone of both the real and the virtual 
model.  For the real model, these are given by the Vicon. For the virtual 
model, they have to be calculated from the local matrices in the OSG 
hierarchy. 

7. The system waits for the user to start the animation. 

8. When the user presses the ‘s’ key, the animation starts. For each frame, the 
application retrieves each bone’s global matrix from the Vicon. We then 
compute the different transformations to get the new global transformation 
matrix for the virtual character. 

9. As OSG only deals with relative coordinates, this global matrix is converted to 
a local matrix. 

10. Finally, the final matrix forms a new animation path for the bone. 

 

We have now taken into account all the transformations to apply the real world 
animation to our virtual avatar according to the mirror illusion. 
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The following figure gives a schematic view of the whole process (Figure 6.7): 

 

 
Figure 6.7: Schematic view of the program process 
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7. Camera transformation 

7.1. Introduction 

In computer graphics, a camera object is used to simulate the human eye (Figure 
7.1). The camera has a position, a direction and specific parameters such as lens 
parameters.  

OSG provides two kinds of camera. The first type is a camera node that can be 
inserted in the scene hierarchy. It offers several interesting possibilities such as the 
setProjectionMatrixAsFrustum() method which we could have used (see chapter 7.2). 
Unfortunately it cannot be animated, so it is not what we are seeking. It is usually used 
only for texture rendering. The second kind is a camera object available in the OSG 
viewer implementation. The default camera used to display the virtual world corresponds 
to this type. Moreover it can be animated. It is generally used in computer games to 
simulate the view from a moving object (trucks, space ships, etc.). It is exactly what we 
need for our project.  

 

 
Figure 7.1: Example of a virtual camera in a scene and resulting rendering 

 

When looking at a mirror, the image we perceive changes depending on our position. 
To ensure the “mirror illusion”, we have to reproduce these changes in our application. 
When the user moves in the capture volume, another view of the virtual environment 
has to be projected on the screen. To achieve this effect, we first have to track the 
position of the model’s head in order to know where the user is looking. We can then 
update the projection volume and display it on the screen. The calculations involved are 
exposed in the next sub-chapter.  
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7.2. Mathematical aspects 

7.2.1. Camera position 

First we have to determine the position of the user’s head in the virtual world’s 
coordinates. The Vicon gives us its position in real world coordinates, so we just have to 
convert it. We will achieve this by using our “conversion point”, a point that is the same 
in both worlds and for which we know the coordinates in both worlds: the bottom corner 
of the mirror/projection screen (Figure 7.2).  

 

 
Figure 7.2: Camera position 

 

We have: 

RmirrorRmirrorVV ΜΜΜ=Μ −1
 

 

7.2.2. Projection matrix 

Now that we know where the camera is in the virtual space, we can calculate its new 
projection matrix. As the screen’s size is fixed, not only the view point will change 
depending on the camera’s position but also the focal length. Indeed, the focal length 
influences the field of view, i.e. how much of the entire scene appears in the image. The 
farther the user is from the screen, the wider the lens (Figure 7.3). 

MR 

REAL WORLD VIRTUAL WORLD 
Mirror 

MmirrorR MmirrorV 

MV 
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Figure 7.3: Cameras focal lengths 

 

OSG provides a very useful method: setFrustum(). This method takes six parameters 
in input: left, right, bottom, top, near, far (Figure 7.4).  

 

 
Figure 7.4: Camera’s frustum 

 

As we have the camera’s position (xcamera, ycamera, zcamera), the size of the screen 
(width, height) and the coordinates of the mirror/screen’s lower corner (xmirror, ymirror, 
zmirror), these parameters are pretty easy to calculate: 

Mirror 

85mm 35mm 
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As for the “far” value, we chose 800 (8 meters), which is approximately the size of 
our environment. 

7.3. Implementation 

As stated in the introduction, we use the default camera from the OSG viewer. First 
we update its position in regard to the actor’s head. While animating the different bones, 
the system checks if the current bone is the head. If it is the case, it invokes the 
“camera update” routine. The head’s transformation matrix is stored and used to 
calculate the camera’s new position (see previous section).  

Second we calculate its new projection matrix. We use the setFrustum() method as 
described in the previous section. In OSG, the frustum is defined with negative and 
positive values, the “centre” being on the line of sight. For example, the left value is 
negative whereas the right value is positive (same thing for the bottom and top values). 
To ensure this rule, we simply check the sign value of each parameter and change it if 
necessary. (See annex 3 for an abstract of the code.) 

Finally, the view matrix (i.e. the position of the camera) and frustum are affected to 
the camera viewer and the system displays the new camera projection.  

When computing the camera position, we had some problems of orientation, resulting 
from a matrix mismatch in world orientation. Normally the view matrix represents a ‘Z’ 
up coordinate system, but the camera in OSG represents a ‘Y’ up coordinate system. The 
issue is to provide a rotation from ‘Y’ up to ‘Z’ up. This can be easily done by rotating the 
view matrix of -90 degrees about the x-axis.   

 With the camera update, the “mirror illusion” is much more convincing. One has the 
impression that the screen is a window on a virtual world. Thus, the immersion, a major 
feature in virtual reality, is noticeably enhanced. 
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8. Tests and results 

8.1. Tests 

The application was tested with different subjects (two females and one male). Here 
is an account of a typical session. 

First, we have to set up the motion capture session as described in chapter 4.2.2. We 
calibrate the system (static and dynamic calibration). The model is equipped with the 
markers. He/she adopts the T-posture and we capture a range of motion to calibrate the 
subject. The system is now ready and we can start capturing movements (open real-
time mode, start Tarsus.) 

We then load the OSG application (VirtualMirror.exe), and provide it with the 
configuration file. The 3D virtual world appears on the screen without any 
transformation (neither camera nor symmetry). The program then waits for the user’s 
input (press ‘c’) to start the calibration process. The subject adopts the T-posture (same 
position as the virtual model) for the system to match their respective positions (Figure 
8.1). Finally, the user presses the ‘s’ key to start the simulation. The model can then 
move freely in the capture space and will have the impression of looking at a window on 
a virtual world in which a virtual avatar moves symmetrically to him/her. 

 

   
Figure 8.1: Real and virtual models in calibration posture 
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The next figure shows the initial test results (without all the required transformations) 
(Figure 8.2) and the final results (Figure 8.3).  

 

 
Figure 8.2: Initial result without required pivots transformations. 

 

  
Figure 8.3: Subjects during test sessions at MIRALab 
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8.2. Results 

We achieved the desired result, as the mirror effect and virtual character’s real-time 
animation are accurately reproduced. Still we consider that a few improvements could be 
made.  

Our first concern is the smoothness of the animation. Due to the amount of 
calculations needed for the animation, the computational cost is quite significant. Even 
though the 3D environment and the avatar have been optimised for real-time, we still 
had undesired time lapses. In an attempt to improve this we tried running each 
application on a different CPU. Since the communication between the applications (iQ, 
Tarsus and VirtualMirror) is done over the network, we can run them on different 
machines for optimum performance. Although there was some improvement, the result 
still wasn’t totally satisfying. When using the Vicon 8i system, we noticed that the iQ 
real-time viewer had delay problems. Therefore we thought the setback might come 
from the Vicon system itself and not our application. Indeed there was a noticeable 
improvement in the quality of the data after the purchase of the new MX system. 
Unfortunately the virtual avatar still shakes sometimes when performing fast motions. 
We found out that this effect is due to the OSG interpolation used when computing 
object’s animation paths. Indeed, OSG needs many control points over time to setup a 
good animation path. As we are working in real-time we cannot estimate future bone 
transformations, so only one control point (the current bone’s position) can be given to 
the path. This hence induces errors when interpolating between control points. 

Another setback is that we do not take into account the morphology of the subject. 
The same motion cannot be applied to differently proportioned skeletons without 
causing undesirable effects. It has to be modified or “retargeted”. Motion retargeting56 is 
an important research topic in computer graphics. However, in our case, it is easier to 
adapt the virtual skeleton to the actor’s proportions, rather than retarget the motion. 
One solution would be to rescale the biped during the calibration. We could retrieve the 
size of each bone from the Vicon and apply it to the virtual avatar’s skeleton. 
Unfortunately, we didn’t have enough time to add this feature.  

Finally, we deemed that the lighting’s quality in OSG was not good enough. We tried 
to import lights directly from 3dStudioMax but the result still wasn’t satisfactory. Indeed 
lights are not considered in the same way in OSG and 3dStudioMax. OSG employs the 
same method as OpenGL. Therefore the 3dStudioMax parameters are not taken into 
account. We have to add them if we want to get a better approximation of the final 
3dStudioMax result (Figure 8.3). At the moment, this has to be done manually for each 
light. For this reason, we only added essential factors such as spot exponent or spot 
cutoff. However a complete lighting integration would represent a great upgrading.  

 

 

                                            
56 Michael Gleicher, Retargeting motion to new characters, SIGGRAPH 98, pp.33-42, 1998. 
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Figure 8.3: 3dStudioMax rendering and OSG rendering with and without lights 
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9. Conclusion and future work 
This project was very interesting as it concerned many topics in computer graphics. It 

involved a broad spectrum of tools and techniques. Working in real-time was also very 
motivating as it is very interactive and we had to find solutions to overcome the 
processing time-constraints.  

9.1. Real-time cloth simulation 

Unfortunately we were not able to integrate the real-time cloth animation simulation 
as it is not complete yet. Although our program works fine at this time, we cannot assert 
that the animation’s quality won’t be affected once we add the clothes.  

Cloth simulation requires “advanced and complex computational methods where most 
important key issues remain computation speed and efficiency [:] the mechanical 
representation should be accurate enough to deal with the nonlinearities and large 
deformations occurring at any place in the cloth, such as folds and wrinkles. Moreover, 
the garment cloth interacts strongly with the body that wears it, as well as with the 
other garments of the apparel. This requires advanced methods for efficiently detecting 
the geometrical contacts constraining the behaviour of the cloth, and to integrate them 
in the mechanical model (collision detection and response).” 57 (Figure 9.1)  Even though 
for real-time applications specific approximation and simplification methods are made, 
giving up some of the mechanical accuracy, this additional computational cost might 
reduce the frame rate dramatically. In this case further research would have to be made 
to optimise the application. 

 

 
Figure 9.1: Efficient and robust collision detection processing 

 

Furthermore we could add an interface to make our application more user-friendly. At 
the moment the user has to enter the different commands (start calibration, start 
animation) directly in the Command prompt. A graphic interface would be especially 
useful to help the user choose different garments (Figure 9.2). 

                                            
57 P. Volino, F. Cordier, N. Magnenat-Thalmann, From early virtual garment simulation to 

interactive fashion design, Computer-Aided Design Journal (CAD journal), Elsevier, volume 37, pp 
593-608. March 2005. 
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Figure 9.2: Possible user interface for VirtualMirror.exe 

 

9.2. Body retargeting 

As stated in the previous chapter, we do not deal with the model retargeting. Another 
way of taking into account the user’s morphology would be to use 3D scanning. 3D 
scanners available nowadays can capture a body’s shape almost instantly (Figure 9.3).  

 

        
Figure 9.3: 3D scanner and resulting 3D model 
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By using the resulting 3D model instead of the generic avatar, the correspondence 
with the user would be perfect. However, this cannot be done automatically. Before 
converting the scanned data into a complete, readily animatable model, several 
problems need to be solved.  

“It is frequently necessary to simplify the models created from the scanned data in 
order to reduce the computational burden.”58 Indeed although these models are usually 
very realistic and visually convincing, they contain a large number of polygons, which is 
unacceptable for a real-time application. 

Additionally “apart from solving the classical problems such as hole filling and noise 
reduction, the internal skeleton hierarchy should be appropriately estimated in order to 
make them move.”59 Several approaches have been taken. Most of them involve the 
placement of external landmarks60, markers or feature points. The most likely position of 
the bones can then be calculated according to these reference marks.  

 

                                            
58 J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models, WSCG 

Jan. 2003, p.1 
59 N. Magnenat-Thalmann, H. Seo, F. Cordier, Automatic Modeling of Virtual Humans and Body 

Clothing, Journal of Computer Science and Technology, Vol.19 No6, Beijing: Chinese Academy of 
Sciences, Dec. 2004, p.1 

60 J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models, WSCG 
Jan. 2003, p.2 
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Annexe 

Configuration file 

 

 
 

config.pina 

129.194.68.189 …………………………  IP Address of Tarsus 
scene.dae ………………………  COLLADA file name 
Bip01 ……………………..  Root of the bones hierarchy 
23 …………………  Number of bones to load (except the root) 
Bip01_L_Thigh  
Bip01_L_Calf 
Bip01_L_Foot 
Bip01_L_Toe0 
Bip01_R_Thigh 
Bip01_R_Calf 
Bip01_R_Foot 
Bip01_R_Toe0 
Bip01_Spine 
Bip01_Head 
Bip01_L_Clavicle 
Bip01_L_UpperArm  Bone’s names 
Bip01_L_Forearm 
Bip01_L_Hand 
Bip01_R_Clavicle 
Bip01_R_UpperArm 
Bip01_R_Forearm 
Bip01_R_Hand 
Bip01_Pelvis 
Bip01_Neck 
Bip01_Spine1 
Bip01_Spine2 
Bip01_Spine3 
-160 -95 45 …………………  Virtual mirror translation (x,y,z) 
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Bones animation 

/*************************************************************************** 
*   UPDATE THE BONES 
* Create a new animation path for the corresponding bone. 
* Parameter: 
*  - CURRENT the bone being considered 
***************************************************************************/ 
osg::AnimationPath* BipedAnim::createAnimationPath(int current) 
{ 
      osg::AnimationPath* animationPath = new osg::AnimationPath; 
      animationPath->setLoopMode(osg::AnimationPath::NO_LOOPING);   
 osg::Matrixd M; 
 osg::Vec3 t, tMVGCalib, tMRG, tMRGCalib; 
 osg::Quat r,  rMVGCalib, rMRG, rMRGCalib, r1; 
 
 // compute pivot/coordinate systems transformation 
 tMVGCalib = _MVGCalib[current].getTrans(); tMRG = _MRG[current].getTrans(); 
tMRGCalib = _MRGCalib[current].getTrans(); 
 t.x() = tMVGCalib.x() + tMRG.x() - tMRGCalib.x(); t.y() = tMVGCalib.y() + 
tMRG.y() - tMRGCalib.y(); t.z() = tMVGCalib.z() + tMRG.z() - tMRGCalib.z(); 
 
 M.invert(_MRGCalib[current]); 
 _MRG[current].get(rMRG); M.get(rMRGCalib); 
_MVGCalib[current].get(rMVGCalib);  
 r1 = multiQuat(rMRG, rMRGCalib); 
 r = multiQuat(r1, rMVGCalib); 
 
 // compose the matrix from the resulting translation/rotation 
 _MVG[current].makeIdentity(); 
 _MVG[current].set(r);  
 _MVG[current](3,0) = t.x(); _MVG[current](3,1) = t.y(); _MVG[current](3,2) = 
t.z(); 
 
 // compute the local transformation 
 calculateLocalMatrices(current); 
  
 // extract translation/quaternion/scale from transformation 
 osg::Vec3 position = _MVG[current].getTrans(); osg::Quat orientation; 
_MVG[current].get(orientation); osg::Vec3 scale = _MVG[current].getScale(); 
 animationPath->insert(0.0,osg::AnimationPath::ControlPoint(position, 
orientation, scale)); 
 
 return animationPath; 
} 
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Camera update 

/*********************************************************************************
**** 
*  UPDATE CAMERA 
* Update camera from the current head position. 
* Size of the screen: width=320, height=240. 
**********************************************************************************
***/ 
void BipedAnim::UpdateCamera(int index) 
{ 
 // screen size 
 double height = 240.0, width = 320.0; 
 double x = _Mvm(3,0), y = _Mvm(3,1), z = _Mvm(3,2); // screen position 
 osg::Matrixd M1, M2; 
 
 // first compute the new position of the camera 
 _Mcam.makeIdentity(); M1.invert(_Mrm); M2.setTrans(_MRG[index].getTrans()); 
 _Mcam.preMult(_Mvm);  
 _Mcam.preMult(M1); // Mvm * Mrm-1 
 _Mcam.preMult(M2); // (Mvm * Mrm-1) * tMRG 
 
 // then, compute camera view as Frustum 
 _left = x - _Mcam(3,0);  
 if(_left > 0) _left = -(_left); 
 _right = width + _left;  
 _bottom = _Mcam(3,2) - z;  
 if(_bottom > 0) _bottom = -(_bottom); 
 _top = height + _bottom;  
 _zNear = _Mcam(3,1) - y; 
 if(_zNear < 0) _zNear = -(_zNear); 
 _zFar = 800.0;  
 
 _cameraOn = true; 
} 
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