
Caecilia Charbonnier and Clementine Lo December 2006

VIRTUAL MIRROR:

A real-time motion capture

application for virtual-try-on

Professor: Nadia Magnenat-Thalmann

Assistant: Etienne Lyard

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 2 MAS thesis

Foreword

This project is pretty extensive and requires a broad range of skills. Therefore
it has been divided into several separate tasks. They were assigned to two
participants considering their respective interests and expertise.

• 3D design (Clementine Lo): modelling of the avatar and of the 3D
environment

• Real-time motion capture (Clementine Lo): capturing the motion in
real-time with the Vicon

• Networking (Clementine Lo and Caecilia Charbonnier): recovering
the data from Tarsus (distributed application). This task involved both
participants as it is the communication point between the Vicon (managed
by Clementine Lo) and OSG (managed by Caecilia Charbonnier)

• Development of an OSG application (Caecilia Charbonnier):
loading and viewing the avatar and 3D environment; applying the motion
capture data to the virtual avatar.

• Mathematical calculations (Clementine Lo): calculating the
transformations involved to correctly map the subject’s movements onto
the avatar according to the mirror illusion; calculating the camera’s
position and projection matrix

• Implementation of mathematical results (Caecilia Charbonnier):
implementing the different mathematical results in the code for the
animation of the avatar and the camera transformation.

A more detailed explanation of the organization of this project is given in
chapter 1.2

Of course, even though their work was distinct, both participants have a good
understanding of all the techniques, tools and theories involved in this project.
For instance one cannot implement a mathematical formula without
understanding it and one cannot develop a mathematical solution without
comprehending the underlying code.

In order for the reader to understand the project as a whole, the work of both
parties is described in this document. Nevertheless, the input of each contributor
is made clear:

Caecilia Charbonnier: blue font

Clementine Lo: black font

Common parts (introduction, conclusion, etc.): dark blue font

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 3 MAS thesis

Table of contents
1. Introduction...5

1.1. Aim and objectives .. 5
1.2. Organization ... 6

2. State-of-the-Art ...8
3. 3D design ...16

3.1. Modelling the avatar .. 16
3.1.1. Body ...16
3.1.2. Head...17
3.1.3. Hair ..19
3.1.4. Skeleton and Skinning..20
3.1.5. Textures..21

3.2. Modelling the 3D environment .. 23
4. Real-time motion capture..25

4.1. Vicon optical motion capture system ... 25
4.2. Real-time motion capture with Vicon ... 27

4.2.1. Calibration of the system..27
4.2.2. Calibration of the subject..27
4.2.3. Tracking of the movements ..30

4.3. Networking ... 31
4.3.1. Concepts ...31
4.3.2. Tarsus communication protocol ..32

5. OSG development ..33
5.1. Building the viewer .. 33

5.1.1. General principles ..33
5.1.2. COLLADA file importer..35

5.2. Character animation .. 36
5.2.1. Animation with OSG ...36
5.2.2. Skinning and general concepts..37
5.2.3. Application structure and management ...39

5.3. Configuration file ... 40
6. Mathematical aspects of the animation ..41

6.1. Global and relative coordinates ... 41
6.2. Mirror illusion: symmetry and position in the virtual world....................................... 42

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 4 MAS thesis

6.3. Symmetry with quaternions.. 43
6.3.1. A naïve approach ...43
6.3.2. A better approach ..45

6.4. Pivots ... 46
6.4.1. Pivots orientation ...46
6.4.2. Calibration...46
6.4.3. Animation..47

6.5. Conclusion and implementation .. 50
7. Camera transformation..52

7.1. Introduction.. 52
7.2. Mathematical aspects... 53

7.2.1. Camera position...53
7.2.2. Projection matrix ...53

7.3. Implementation... 55
8. Tests and results..56

8.1. Tests.. 56
8.2. Results ... 58

9. Conclusion and future work...60
9.1. Real-time cloth simulation .. 60
9.2. Body retargeting ... 61

10. Acknowledgements..63
11. Bibliography...63

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 5 MAS thesis

1. Introduction
Cloth simulation has been a topic of intensive research for several years. At the

University of Geneva, MIRALab1 has been involved in this field for over 15 years. After
developing a state-of-the-art platform to create and animate garments (Fashionizer2),
the group is now working on real-time cloth simulation. One of the challenging aspects
of virtual clothing is its adaptation to the body motion: “dressing a virtual body involves
designing complex garment shapes, as well as an advanced simulation system able to
detect and to handle multiple collisions generated between the cloth and the body.”3
When we buy a garment in a shop, we try it on and move in front of a mirror to test its
fit. Therefore, it would be interesting to have a “virtual mirror” to be able to test this
new real-time cloth simulation method. By using motion capture, the subject could “try
on” different garments in the virtual world and see his/her avatar move with them on.

Figure 1.1: 3D model with clothes created and simulated with Fashionizer (MIRALab)4

1.1. Aim and objectives

The goal of this project is to create a 3D application which will give the illusion of a
“virtual mirror” by using real-time motion capture. As MIRALab is using

1 http://www.miralab.ch
2 N. Magnenat-Thalmann, F. Dellas, C. Luible, P. Volino, From Roman Garments to Haute-

couture Collection with the Fashionizer Platform, Virtual Systems and Multi Media, Japan, Nov,
2004

3 Ibid, p.1
4 P.Volino, Collision Detection for Deformable Objects, Course Notes: Collision Detection and

Proximity Queries, ACM SIGGRAPH’ 04, Los Angeles, p.19-37, 2004

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 6 MAS thesis

OpenSceneGraph5 (OSG), a graphic library, to develop its real-time cloth animation
application, the same toolkit is employed for this project. The subject’s movements are
tracked using a Vicon6 optical motion capture system and are applied to a virtual avatar
in real-time. The avatar is included in a 3D environment and the scene is projected on a
big screen in front of the subject. The camera projection is calculated so as to give the
impression of a “window” on a virtual world.

This project involves various areas of 3D computer graphics and programming:

• 3D design: modelling of the avatar and of the 3D environment

• Real-time motion capture: capturing the motion in real-time with the Vicon;
recovering the data from Tarsus, Vicon’s real-time engine (distributed
application).

• Development of an OSG application: loading and viewing the avatar and 3D
environment; applying the motion capture data to the virtual avatar.

• Camera transformation: updating the camera’s position in regards to the
subject’s head position; calculation of the camera’s projection matrix to give
the illusion of a window on another world.

1.2. Organization

The project started beginning of July 2006. On the programming side, the initial
needs were to install OSG and build the skeleton of the application. The first month was
mainly devoted to the animation of a virtual body with OSG. Meanwhile an initial version
of the environment and virtual avatar was created. Once we were able to load the
virtual world and animate the bones of our avatar with OSG, we concentrated on the
connection with the Vicon. We had to find a way to retrieve the animation data from the
Vicon system and integrate it into the OSG application. Unfortunately our first tests with
the motion capture were not satisfactory. Indeed, we didn’t take into account the
different calculations needed to map the motion of the real body onto the virtual
character. This mathematical aspect turned out to be the longest part of the project,
involving many trials and errors. Finally, the last part of the project was dedicated to the
camera implementation, the scene improvement and real-time optimization. We also
tested the application with different subjects.

5 http://www.openscenegraph.org
6 http://www.vicon.com

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 7 MAS thesis

Tasks Resources

Documentation (VICON, OSG, etc.) Caecilia,
Clémentine

3D Design (scene, avatar) Clémentine

Real-time motion capture Clémentine

OSG animation and lights Caecilia

Mathematical aspects (animation and
camera)

Clémentine

OSG Implementation of mathematical
results

Caecilia

Tests and results Caecilia,
Clémentine

Report Caecilia,
Clémentine

M5 M6M1 M2 M3 M4

Table 1.2: Organization of the project by month

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 8 MAS thesis

2. State-of-the-Art
Motion capture as we know it today is a very practical and realistic way to animate

virtual human bodies. It is widely used in medicine, sports, the entertainment industry,
and in the study of human factors.7 Instead of hand animating the model, the
movements of a real person are recorded and transferred to the virtual body. Different
techniques are available. The more popular ones are electromagnetic trackers and
optical motion capture systems.

Although this modern technique only appeared at the end of the 1980’s, motion
capture as a process of taking a human being's movements and recording them in some
way is really nothing new. In the late 1800's several people analyzed human movement
for medical and military purposes. The most notable are Marey and Muybridge (Figure
2.1), who used photography. At the beginning of the 20th century, motion capture
techniques were employed in traditional 2D animation. Disney and others used
photographed motion as a template for the animator. The artist traced individual frames
of film to create individual frames of drawn animation.

Figure 2.1: Galloping Horse 1879, chronophotography by E. Muybridge8

Motion capture is a very large topic. As our project only deals with real-time motion
capture, we will focus on this aspect. Following, we propose an overview of the different
techniques and applications developed in this field during the last 20 years.

7 The Virtual Soldier Research Team (VSR) Program, End-of-Year Technical Report for Project

Digital Human Modeling and Virtual Reality for FCS, Center for Computer-Aided Design, College of
Engineering, The University of Iowa

8 http://www.digitaljournalist.org/issue0309/lm20.html

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 9 MAS thesis

From 1988 to 1992, motion capture was essentially used to animate puppets for
television shows. In 1988, Jim Henson Productions9 (Figure 2.2), used this technique to
animate a low resolution character called “Waldo C. Graphic” (Figure 2.3). An actor was
hooked to a custom eight degree of freedom input device (a kind of mechanical arm with
upper and lower jaw attachments). He was then able to control in real-time the position
and mouth movements of the virtual character. The computer image of “Waldo” was
mixed with the video feed of the camera focused on the real puppets so that everyone
could perform together10.

Figure 2.2: J. Henson and his Muppets Figure 2.3: Waldo C. Graphic11

Later, a light-weight upper-body exoskeleton was developed to track the movements
of the upper torso, head, and arms so that actors could control computer characters by
miming their motions. This suit was used in many projects, although it was not the ideal
body tracking device due to the noise in the electronics and the encumbering nature of
the exoskeleton12.

Three years later, Videosystem, a French video and computer graphics production
house, created a new real-time character animation system. Their first success was the
daily production of “Mat the Ghost”. Using DataGloves, joysticks, Polhemus trackers, and
MIDI drum pedals the puppeteers could interactively perform “Mat”. The computer
generated model was then chroma-keyed with the previously-shot video of the live
actors13.

9 http://www.henson.com/
10 G. Walters, The story of Waldo C. Graphic, Course Notes: 3D Character Animation by

Computer, ACM SIGGRAPH '89, Boston, p. 65-79, July 1989.
11 http://muppet.wikia.com/wiki/Waldo_C._Graphic
12 G. Walters, Performance animation at PDI, Course Notes: Character Motion Systems, ACM

SIGGRAPH 93, Anaheim, CA, p. 40-53, August 1993
13 H. Tardif, Character animation in real time, Panel: Applications of Virtual Reality I: Reports

from the Field, ACM SIGGRAPH Panel Proceedings, 1991

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 10 MAS thesis

Around 1992, SimGraphics14 developed a facial tracking system they called a “face
waldo”. Using mechanical sensors attached to the chin, lips, cheeks, and eyebrows, and
electro-magnetic sensors on a supporting helmet structure, they could track the most
important motions of the face and map them in real-time onto computer puppets. The
importance of this system was that one actor could manipulate all the facial expressions
of a character by just miming the facial expressions himself. One of the first big
successes with the “face waldo” was the real-time performance of Nintendo's popular
videogame character, “Mario” for product announcements and trade shows (Figure 2.4).

In the same year, Brad deGraf worked on the development of a real-time animation
system which is now called Alive! (Figure 2.5). For one character performed with Alive!,
deGraf created a special hand device with five plungers actuated by the puppeteer’s
fingers. The device was first used to control the facial expressions of a computer-
generated friendly talking spaceship15.

Figure 2.4: Mario animation with “face waldo” 16 Figure 2.5: Moxy: animated with Alive! 17

Due to the great success of puppets animation, the motion tracking practice was well
ensconced as a viable option for computer animation production. Commercial companies
appeared and released various motion tracking systems, generally based on optical or
magnetic technology. Polhemus18, Motion Analysis19, AR Tracking20, Ascension
Technology21 (Figure 2.6) and Vicon (Figure 2.7) are the most renowned.

14 http://www.simg.com/
15 B. Robertson, Moving pictures, Computer Graphics World, Vol. 15, No. 10, p. 38-44, October

1992.
16 http://archive.ncsa.uiuc.edu/Cyberia/VETopLevels/Images/Mario.gif
17 http://accad.osu.edu/~waynec/history/lesson11.html
18 http://www.polhemus.com/
19 http://www.motionanalysis.com/
20 http://www.ar-tracking.de/
21 http://www.ascension-tech.com/

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 11 MAS thesis

Figure 2.6: Magnetic motion capture system Figure 2.7: Optical motion capture system

As a consequence, motion capture has been an active research area during the last
15 years. Researchers tried to simplify the calibration process required by commercial
tracking systems and to improve the mapping of realistic motions.

In 1996, Molet et al. proposed a very efficient method to capture human motion after
a simple calibration22. This method is based on the magnetic sensor technology. The
sensor data are converted in real-time into the anatomical rotations of a body
hierarchical representation (Figure 2.8). Such a choice facilitates motion reuse for other
human models with the same proportions. Their human anatomical converter was used
in a wide range of applications from teleconferencing to the conception of behavioural
animation.

Figure 2.8: Performed and converted postures of a soccer motion (Molet et al.)

22 T. Molet, R. Boulic, D. Thalmann. A Real-Time Anatomical Converter for Human Motion

Capture, 7th EUROGRAPHICS Int. Workshop on Computer Animation and Simulation'96, Poitier,
France, G. Hegron and R. Boulic eds., ISBN 3-211-828-850, Springer-Verlag Wien, p. 79-94,
1996.

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 12 MAS thesis

Later, they improved their system by including the multi-joint control. This method
allows driving several joints using only one sensor23. As a result the model’s
deformations are more realistic whilst the cost remains the same. However it can only be
applied to joints that have clear interdependence 24 (i.e. when a variation of one joint
implies a variation of the other joint, as for the spine for example).

Using the same anatomical converter system, Nedel et al. improved the
representation of the virtual human model by adding the simulation of anatomical
muscles and bones25.

Another method aiming at the reduction of the number of sensors was proposed by
Badler et al. They created an interface that allows a human participant to perform basic
motions using a minimal number of sensors26. They use only 4 magnetic sensors of 6
DOF to capture full body standing postures in real-time and map them onto an
articulated computer graphics human model (Figure 2.9). The unsensed joints are
positioned by a fast inverse kinematics algorithm. The resulting postures are generally
accurate, if not exact, representations of the actual posture. For high-fidelity motion
recording, this is not good enough, but for most interactive applications it is an
extremely useful technique.

Figure 2.9: Sensor placement (Badler et al.)

23 T. Molet, R. Boulic, D. Thalmann, Human Motion Capture Driven by Orientation

Measurement, Presence, MIT, Vol.8, N°2, p. 187-203, 1999.
24 T. Molet, Z. Huang, R. Boulic, D. Thalmann, An Animation Interface Designed for Motion

Capture, Proc. Of Computer Animation'97, Geneva, ISBN 0-8186-7984-0, IEEE Press, p. 77-85,
June 1997.

25 L. P. Nedel, T. Molet, D. Thalmann, Animation of Virtual Human Bodies Using Motion
Capture Devices, Proc. 2nd Brazilian Workshop on Virtual Reality - WRV'99, p. 139-150, Marilia,
SP, Brazil, November, 1999.

26 N.I. Badler, M. J. Hollick, J. P. Granieri, Real-Time Control of a Virtual Human Using Minimal
Sensor, Presence: Teleoperators and Virtual Environments, Vol. 2, Number 1, MIT, p. 82-86,
Winter 1993.

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 13 MAS thesis

Apart from the technical complexity of designing realistic human motion, another
recurrent problem is the cost. The equipment to accurately track every body segment (or
joint angle) of a human being can be very expensive.

A solution to reduce costs and cumbersome of motion capture devices is to use video-
based tracking systems. With this technique, the reconstruction of human motion is
based on the estimation and tracking of motion in image sequences using computer
vision methods. Okada et al. proposed an interesting application which presents a few
similarities with our project. They produced a virtual fashion show using real-time
markerless motion capture27. Virtual models were animated according to the motion of
the real models and were projected on screens during the catwalk. Furthermore, the
avatars wore different clothing than their corresponding model. Obviously, the use of
visible markers and sensors had to be avoided to preserve the beauty of the real show.
Only pairs of cameras were used to estimate the postures (Figure 2.10).

Figure 2.10: Overview of the virtual fashion show (Okada et al.)

Nowadays, image-based tracking is a well-established branch of special effects for
movies and product announcements. In augmented reality applications for example,
tracking and registration of cameras and objects are required to combine real and
rendered scenes. In this area, CVLab28 an active Swiss computer vision laboratory has
presented many accurate solutions that work in real-time even under difficult

27 R. Okada, B. Stenger, T. Ike, N. Kondoh, Virtual Fashion show using real-time markerless

motion capture, ACCV (2), p. 801-810, 2006.
28 http://cvlab.epfl.ch/research/augm/augmented.html

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 14 MAS thesis

conditions29. Their 3D tracking algorithm is robust enough to track a human face, given a
rough and generic 3D model. Virtual objects can then be added in a realistic way and in
real-time (Figure 2.11).

Figure 2.11: Example of 3D tracking face (CVLab)

Although many problems are yet to be solved in the motion capture field, there is no
doubt that this technology has become an essential tool, used in numerous and diverse
applications. The most obvious are the game and entertainment industry, which use
real-time technology for fun and profit (Figure 2.12 and 2.13).

Figure 2.12: Anyone for Tennis, 1997 (MIRALab) Figure 2.13: Live performance30

However several other domains also employ this technique. In education, real-time
motion capture has been used to provide distance mentoring, interactive assistance and
personalized instructions. The military (Figure 2.14) have also conducted researches to
simulate battlefields group training and peace-keeping operations. Motion capture is

29 L. Vacchetti, V. Lepetit and P. Fua, Stable Real-Time 3D Tracking Using Online and Offline

Information, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, Nr. 10, pp.
1391-1391, 2004.

30 http://www.ptiphoenix.com/application/animation/live_animation.php

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 15 MAS thesis

even used in medical applications such as gait analysis (Figure 2.15), medical emergency
training or phobia treatment (social phobia, arachnophobia, acrophobia, etc.).

Figure 2.14: NASA zero gravity experiment31

Figure 2.15: Gait analysis (MotionAnalysis32and Innsport33)

31 http://zerog.jsc.nasa.gov/Other/Feb_12_2004_Robotic/subviewer.cgi
32 http://www.motionanalysis.com/applications/movement/gait/gait.html
33 http://www.innsport.com/MMRGaitNONAV.htm

Clementine Lo December 2006

MIRALab - University of Geneva 16 MAS thesis

3. 3D design
While designing the 3D model and environment, we had to consider a few

constraining factors. First of all, given that we are working on a real-time application, the
rendering time has to be reduced as much as possible: the number of polygons has to
be minimal and the lighting as simple as possible. What's more, as of now, OSG only
supports simple bitmap textures. We cannot apply any special rendering effects such as
transparency, reflection or raytracing. For these reasons, our possibilities in getting a
sophisticated result will be noticeably diminished.

3.1. Modelling the avatar

3.1.1. Body

To create the body, we first used the Poser5 software from Curious Labs34. This
program is specialised in human form modelling and animation. It has a database of
several bodies with realistic textures and contours. As our major preoccupation is to
keep a low resolution, we used a low polygon model from Poser4 (Figure 3.1). This
model isn’t as realistic and smooth as the Poser5 models (Figure 3.2), but it has only
3722 polygons whereas the very detailed model has 29’160 (excluding the head).

Figure 3.1: Low polygon Poser4 model Figure 3.2: High polygon Poser5 model

We then exported this figure as a .3ds file and imported it directly into 3dStudioMax35
(Figure 3.3). After optimising the hands, we obtained a model with 2894 polygons.

34 http://www.curiouslabs.com
35 http://www.autodesk.com

Clementine Lo December 2006

MIRALab - University of Geneva 17 MAS thesis

Figure 3.3: Poser body imported in 3dStudioMax

3.1.2. Head

In an attempt to achieve a more interesting model, we decided not to use the default
Poser head. We used Poser’s Face Room to design an original face. (Figure 3.4) shows
the interface of this tool. The user can visualize the 3D model in the central window as
well as its texture. On the right side are the face shaping tools. These allow the user to
modify a range of parameters for each face feature. For the nose for example, there are
eight different parameters.

Clementine Lo December 2006

MIRALab - University of Geneva 18 MAS thesis

Figure 3.4: Poser Face room interface

The final model was then exported as a .3ds file and imported into 3dStudioMax
(Figure 3.5) to be attached to the body. As the number of polygons was much too high,
we reduced it to 2141 polygons by using the MultiRes modifier (Figure 3.6). We also
modified the texture image to add some make-up: lip colour and grey shading around
the eyes.

Clementine Lo December 2006

MIRALab - University of Geneva 19 MAS thesis

Figure 3.5: High resolution head in Poser (1) and 3dStudioMax (2 and 3)

Figure 3.6: Low resolution head in 3dStudioMax

3.1.3. Hair

To complete the modelling of the avatar, we still had to add some hair. Unfortunately
we couldn’t use a hair modelling system such as the Hair and Fur world-space modifier
in 3dStudioMax8 or the ShagHair36 plug-in. These systems produce very realistic results
(Figure 3.7) but they also require a lot of rendering time.

Figure 3.7: Model with hair produced with ShagHair plug-in

36 http://www.digimation.com

Clementine Lo December 2006

MIRALab - University of Geneva 20 MAS thesis

Hair modelling (geometry, density, distribution and orientation of each individual hair)
and rendering (hair colour, shadow, specular highlights, varying degree of transparency
and anti-aliasing) is a very complex process. In reality there are about 100’000 to
150’000 hair strands on a human scalp. Their geometric form is that of a very thin
curved cylinder with varying thickness. Thus, there are considerable difficulties in
simulating hair. As said by Thalmann and al.: “huge number and intricacies of individual
hair, complex interaction of light and shadow among the hairs, the small scale of
thickness of one hair compared to the rendered image and intriguing hair to hair
interaction while in motion.”37 Given that we are working in real-time, we cannot afford
to spend so much computational time on hair simulation.

For the same reason, the dynamic simulation of the hair will not be taken into
account. By adding hair animation, we would also have to deal with the calculation of
their movement for each frame (very complex, since a hair strand isn’t solid but bends
as it moves), their collision with other objects and the self-collision of hair.

In consequence, we opted for a very simple though not as aesthetically pleasing
solution. We modelled a simple mesh and applied a texture to simulate the inter-
reflections (Figure 3.8).

Figure 3.8: Head with hair in 3dStudio Max

3.1.4. Skeleton and Skinning

The creation of well-adapted skeletons is very important for the quality of the
animation. Even a slight change can have a visible impact once the body is animated.

In this project, we used a biped skeleton in 3dStudioMax and scaled it to fit the body.
As mentioned, it is very important to scale each bone properly, to fit the mesh the best
way possible. We then attached the bones to the mesh, defining which bones move

37 N. Magnenat-Thalmann, S. Hadap, P. Kalra, State of the Art in Hair Simulation, International

Workshop on Human Modelling and Animation, Seoul: Korea Computer Graphics Society, pp. 3-9,
June 2002, p.1

Clementine Lo December 2006

MIRALab - University of Geneva 21 MAS thesis

which parts of the mesh. We used BonesPro38 to achieve this task because the method
used to import the skinning in OSG is based on this plug-in. Indeed, as we will see in
chapter 5.1.2, we use COLLADA to transfer our scene into OSG. For the skinning, a
method was integrated into the COLLADA importer by our assistant, Etienne Lyard (see
chapter 5.2.2).

BonesPro allows us to visualize the influence each bone has on the mesh39 (Figure
3.9). When necessary, modifications can be made with the Strength and Falloff controls.
If a more detailed and precise adjustment is required, we can also work on the vertices.
For each vertex we can adjust the percentage of influence of a particular bone.
Although this can be long and tedious, it is crucial. The realism and quality of the
animation greatly depend on it.

Figure 3.9: Visualisation of the influence of the upper-arm bone

3.1.5. Textures

As previously stated, we can only apply simple textures, such as bitmaps in OSG. In
order to obtain aesthetically pleasing results despite this limitation, we can use texture
baking. To bake a texture means to convert into channel maps (color, bump,
illumination, etc.) the material's texture as it appears in the lit scene40. In this way,
effects which usually take a very long time to render (reflections, refractions, shadows
etc.) are simply integrated into a bitmap.

38 http://www.digimation.com
39 http://www.rendernode.com/articles.php?articleId=69
40 http://www.c4dcafe.com/reviews/R95/page2.html

Clementine Lo December 2006

MIRALab - University of Geneva 22 MAS thesis

Moreover, for the bitmap textures to be applied smoothly and seamlessly, we have to
adjust the texture coordinates, i.e. specify how the 2D texture (Figure 3.10) will be
“projected” onto the 3D object. A useful technique to do this is pelting41. It was inspired
by a procedure traditionally used to stretch out animal hides for tanning. The user
defines edges on the 3D object, which are then spread out. This pulls the entire system
and flattens the coordinates (Figure 3.11). While working on texture mapping, we use a
standard checker material to make sure that the coordinates are correct Figure 3.12).
Figures 3.13 and 3.14 show the final model with initial texture (cannot be rendered in
OSG) and final texture.

Figure 3.10: Pina texture Figure 3.11: Pina UV map

Figure 3.12: Pina with chequered texture Figure 3.13: Pina with initial textures

41 Dan Piponi and George Borshukov, Seamless Texture Mapping of Subdivision Surfaces by

Model Pelting and Texture Blending, Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, ISBN:1-58113-208-5, pp. 471–478, 2000

Clementine Lo December 2006

MIRALab - University of Geneva 23 MAS thesis

Figure 3.14: Pina final model

3.2. Modelling the 3D environment

Our goal was to create an original and modern environment. The “New York loft
apartment” allowed us to produce a stylish setting while keeping things simple in order
to meet the real-time requirements. To furnish it we decided to reproduce existing
models from a designer called Teo Jakob42. We took exact measures of different items
and modelled them in 3dStudioMax (Figure 3.15).

Figure 3.15: Teo Jakob chair and 3D model

42 http://www.teojakob.ch

Clementine Lo December 2006

MIRALab - University of Geneva 24 MAS thesis

As for the avatar, all the textures were then baked (Figure 3.16 and 3.17) with proper
lighting in order to obtain a richer result without extending the rendering time (Figure
3.18).

Figure 3.16: Baked texture for the floor Figure 3.17 Baked texture for the chair

Figure 3.18: Final environment with baked textures rendered in 3dStudioMax

Clementine Lo December 2006

MIRALab - University of Geneva 25 MAS thesis

4. Real-time motion capture

4.1. Vicon optical motion capture system

In this project we first used an 8 camera Vicon 8i system. MIRALab then changed its
system to a Vicon MX (still 8 cameras). As we will see later, this upgrade had a positive
impact on the quality of our application. As for the software, we used Vicon iQ and
Tarsus, Vicon’s real-time engine.

Vicon is an optical detection system, which means the information is transferred to
the computer without the need of any cabling. The only limitation is the area in which
the subject can move. The cameras can only “see” a certain amount of space. Of course,
this depends on the size of the room, the placement and the number of cameras used.

How does a Vicon work? First of all, reflectors are placed on the subject’s body. They
are usually positioned at the articulations, as these are the strategic points we need
information about to recreate the subject’s movement. (Figure 4.1) shows the marker
positions we used for this project.

Figure 4.1: Markers on a subject

These markers are small spheres covered with a reflective tape. They act as mirrors
and appear much brighter to the cameras than the rest of the scene. Each camera emits

Clementine Lo December 2006

MIRALab - University of Geneva 26 MAS thesis

infrared light (Figure 4.2). This light wave hits the reflector, which sends it back to the
camera. The camera records the information about its position in the 2D image and
sends it to the computer. The Vicon Datastation (MXNet) controls the cameras and
collects their signals. It then passes them to a computer on which the Vicon software
suite is installed (Figure 4.3). The Workstation, which is the central application of the
Vicon software, takes the 2D data from each camera and combines them with the
camera coordinates and other camera’s views to obtain the 3D coordinates of each
marker for each frame. Roughly speaking, each camera sends rays to each marker and a
reconstruction is made where two or more rays intersect. The positions of each marker
in each frame are then combined to obtain a series of trajectories, representing the
movement of the markers throughout time. In the case of real-time motion capture, all
these reconstructions are managed by the real-time engine: Tarsus.

Figure 4.2: Vicon MX camera Figure 4.3: Configuration used in this project

In the ideal case, the resulting trajectories should be smooth and continuous.
Unfortunately, most of the time, at least one of the following problems occurs. If a
marker isn’t seen by at least 2 cameras, the software will not be able to calculate its
position. This phenomenon is called occlusion and results in broken trajectories: the
system does not know where a marker is during a certain number of frames. Another
problem often encountered is crossover. This happens when two markers are too close
to each other. The system confuses one with the other, causing very weird animations.
In other cases the software produces trajectories that should not exist. These are called
ghost markers and result from reflection of spotlight or flashing material. For this reason,
any shiny material (jewels, watches, shiny fabrics, pins, nails, etc.) should be kept away
from the motion capture space.

Clementine Lo December 2006

MIRALab - University of Geneva 27 MAS thesis

4.2. Real-time motion capture with Vicon

4.2.1. Calibration of the system

Before starting any movement recording, we need to calibrate the system. This is an
essential step, as it plays a considerable role in minimizing the error in the resulting
data. It measures the position and orientation of the capture volume and the location of
each camera relative to the others. This information is used by the Vicon software when
recreating the 3D coordinates with the 2D data sent by the different cameras.

System calibration involves two steps. First, the static calibration sets and locates the
origin and the directions of the global axes of the motion capture space (Figure 4.4). In
this project, we have to use a specific position for the origin. Indeed, as we will see in
chapter 6, we need the coordinates of the projection screen in regards to the Vicon
origin to recreate the mirror illusion. Second, the dynamic calibration allows the system
to calculate the relative positions and orientations of the cameras (Figure 4.5).

Figure 4.4: Static calibration Figure 4.5: Dynamic calibration

4.2.2. Calibration of the subject

Next we have to calibrate the subject to let the computer know “who” the subject is.
Vicon iQ has a particular approach to handling and processing motion capture data. One
of the more important concepts is that of the Subject. “This is simply the definition and
collection of statistics about a known subject that is going to be captured. This definition
includes bones, joints, degrees of freedom, constraints and how markers relate to the

Clementine Lo December 2006

MIRALab - University of Geneva 28 MAS thesis

kinematic model.”43 The more information iQ has, the better it will understand the
subject and the higher the quality of our capture will be. There are two different kinds of
subjects: the VST (Vicon Skeletal Template) and the VSK (Vicon Skeletal Kinematic). The
VST is a generic model specifying the general position of the markers and number of
bones and joints (Figure 4.6). The VSK is the calibrated model. It is specific to a
particular character in the real world given a Range of Motion (ROM).

Figure 4.6: Generic skeleton and marker positions used in this project.

43 VICON, Vicon iQ 1.5 Tutorial 1 : Subject Calibration, p.5

Clementine Lo December 2006

MIRALab - University of Geneva 29 MAS thesis

The marker setting we used implies a set of rules that have to be followed when
fixing the markers (Figure 4.7). These rules will help iQ to make a better fitting between
the generic skeleton and the real subject. Indeed, during the calibration process, iQ will
automatically adapt the VST to the real world actor and produce a VSK.

Figure 4.7: General rules for marker positioning

First, the actor has to adopt a T-posture (Figure 4.8), in which all the markers are
visible. As this is a known pose for the Subject Calibration Process, it will be able to scale
the generic skeleton and align certain joints to fit the particular subject. Next, the actor
has to move his/her arms and legs and perform a Range of Motion. The information thus
collected allows iQ to estimate the skeleton’s configuration even though all the markers
are not visible (the most plausible compared to the subject’s calibration moves).

Clementine Lo December 2006

MIRALab - University of Geneva 30 MAS thesis

Figure 4.8: Subject in calibration T-posture

In the case of real-time motion capture, the calibration has to be done with extra
care. Indeed, there will be no post-processing of the data. We will not have the chance
to remove and/or correct any of the artefacts described in chapter 4.1 (ghosts,
occlusions, crossover, etc). Our initial capture has to be as high-quality as possible. By
making sure everything is well calibrated we ensure that the system will track the
trajectories as accurately as possible.

4.2.3. Tracking of the movements

Once all the calibrations have been done, we can start capturing movements. Vicon
iQ incorporates a real-time data visualization mode. In this mode the user can connect,
set up and manage the Vicon real-time engine: Tarsus.

Once Tarsus is launched, it retrieves the camera data from the Datastation and the
processing options from iQ. It then performs three sequential but very rapid processing
stages:

• Reconstruction of 3D points from 2D camera images.

• Identification of the markers, or auto-labelling, including distinguishing
multiple characters.

• Application of a globally optimised biomechanical model to generate skeletal
based data directly applicable to your character.44

44 http://movement.nyu.edu/projects/nyulab.html

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 31 MAS thesis

4.3. Networking

Now that we understand how to capture motion in real-time using Vicon, we still need
to set up a connection between our program and Tarsus in order to retrieve the
captured bone’s positions. The communication uses a client/server paradigm and takes
place through TCP/IP (Stream Sockets). Let us first quickly overview these different
concepts.

4.3.1. Concepts

 Different applications can be connected by sending data on a network. However a
set of communication rules has to be defined: this is called a protocol. The most
commonly used is the Transmission Control Protocol (TCP). It uses TCP sockets or
Stream Sockets to establish a connection between applications and allow a transfer of
data streams. The connection is identified by the socket addresses (machine’s IP address
and predefined port) of both parties (Figure 4.9)45.

Figure 4.9: TCP socket connection

The client/server paradigm is a standard model used by network applications. When
the server is connected it waits for requests coming from different clients. When a client
needs the data, it connects to the server and sends a request. If it is accepted, the
server sends the requested information (Figure 4.10).

45 D. Konstantas, « Infrastructure de communication » Master course, University of Geneva,

February 2005.

IP : 158.108.33.3 IP : 158.108.2.71

client server
connection

Port : 3000 Port : 21

Client : 158.108.33.3, 158.108.2.71, 21

Server : 158.108.2.71, 158.108.33.3, 3000

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 32 MAS thesis

Figure 4.10: Client-server protocol (TCP)

4.3.2. Tarsus communication protocol

In our case, the server is the Vicon real-time engine (Tarsus) and the client is our
application. The client connects to a server socket on a predefined port (800). It sends a
request for information. Tarsus replies with an array of strings providing the names of
the various channels. Thus the application knows what data is contained in each
channel. The client then repetitively sends a request for data to which the server replies
with a sequence of doubles. The position of each value indicates which channel it
corresponds to.

 Tarsus provides information on the position of both markers and bodies. These
represent the joints defined in the VSK (see chapter 4.2.2). In this project, we use the
bodies’ information. For each body there are 6 different channels: the angle-axis rotation
around each axis and the translation down each axis in world coordinates.

Our application then simply has to parse this data and convert it to get the transform
matrix for each body.

connection

socket()

socket() CLIENT

listen()

accept() connect()

write()

send()

read()

recieve()

read()

recieve()

close()

SERVER

write()

send()

read()

recieve()

close()

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 33 MAS thesis

5. OSG development
As previously stated, this project was developed in OSG. We will now analyse the use

of this toolkit more thoroughly.

5.1. Building the viewer

5.1.1. General principles

The OpenSceneGraph (OSG) is an open source high performance 3D graphics toolkit,
used by application developers in fields such as visual simulation, games, virtual reality,
scientific visualization and modelling. Written entirely in Standard C++ and OpenGL46 it
runs on all Windows platforms, OSX, GNU/Linux, IRIX, Solaris, HP-Ux, AIX and FreeBSD
operating systems. This toolkit is entirely based on scene graphs47 (Figure 5.1).

Figure 5.1: Scene graph architecture

A scene graph holds the data that defines a virtual world. It is an advanced approach
defining the 3D scene, the display and sometimes the interactions with the user. It
includes low-level descriptions of object geometry and their appearance, as well as
spatial information, such as specifying the positions, animations, and transformations of

46 http://www.opengl.org/
47 J. Rohlf and J. Helman, IRIS performer: A high performance multiprocessing toolkit for real–

Time 3D graphics, p. 381–395.

Root node

Node

Leaves

Link

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 34 MAS thesis

objects. Furthermore, it contains additional application-specific data. Scene graph data is
encapsulated in many different types of nodes (basic element of a scene hierarchy)
(Figure 5.2). For example, one node might contain the geometric data of an object;
another node might contain the transformation for that object to orient and position it in
the virtual world. The nodes are associated in a hierarchy that is a directed, acyclic
graph. Using scene graphs has the advantage of structuring the elements of the virtual
world and optimizes the rendering by filtering the amount of data sent to the graphic
pipeline. Therefore it is less time-consuming and especially suitable for real-time
applications.

Figure 5.2: Example of scene graph organization with different types of nodes

OSG is built on top of OpenGL and provides a simple viewer to display the 3D virtual
scene. The whole graphic pipeline to render the scene is directly embedded in the
library. At each time-step, the scene graph is traversed and the objects in the view
volume are drawn. In addition, OSG is quite flexible. There are 45 plug-ins in the core
OpenSceneGraph distribution. They offer support for reading and writing both native and
3rd Party file formats (Table 5.3).

3D Movie and image Archive/networking Pseudo loader

3dc, ac3d, directx, dw,
flt , geo, Inventor, ive,
lib3ds, logo, lwo, lws,

md2, obj, osg, pfb

tga, tiff, quicktime, rgb,
pic, png, pnm, bmp,
gif, jpeg, mpeg, etc.

osga, txp, net, zip, tgz,
osgtgz

rot, scale, stl,
trans

Table 5.3: List of available extension formats48

48 http://www.openscenegraph.org/osgwiki/pmwiki.php/UserGuides/Plugins

Animation

Transform Transform Transform

 Root

Geometry Geometry
Geometry

 Material Material

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 35 MAS thesis

As the environment and the virtual avatar are designed with 3dStudioMax, we cannot
use any of the previously described plug-ins. Indeed, none of them supports high-level
information such as skinning data. Therefore, we decided to use the COLLADA file
format.

5.1.2. COLLADA file importer

COLLADA is a COLLAborative Design Activity for establishing an interchange file
format for interactive 3D applications. It defines a standard XML schema49 for data
interchange. Originally established by Sony Computer Entertainment50 as the official
format for PlayStation 3 and PlayStation Portable development, COLLADA continues to
evolve through the efforts of the Khronos51 contributors. Dozens of commercial game
studios and game engines have adopted the standard.

COLLADA supports features such as character skinning and morph targets, rigid body
dynamics and shader effects for multiple shading languages. Solutions exist to transfer
data from one Digital Content Creation (DCC) tool to another. Supported DCCs include
Maya (using ColladaMaya), 3dStudioMax (using ColladaMax), Softimage XSI and Blender.
Game engines, such as Unreal engine and the C4 Engine, have also adopted this format.

The structure of a COLLADA document contains a header, a set of libraries and a set
of scenes (Figure 5.4). The libraries hold and organize many types of objects
(<animation>, <camera>, <controller>, <geometry>, <material>, <light>, etc.) and
the scenes describe the hierarchy or scene graph of objects in the same space. All
objects in the document can be managed using meta-information.

Figure 5.4: Structure of a COLLADA document52

49 http://www.xml.com/
50 http://www.scee.com/index.jhtml
51 http://www.khronos.org/collada/
52 http://www.khronos.org/collada/presentations/collada_siggraph2005.pdf

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 36 MAS thesis

In our application, COLLADA is used to export the environment and the character
from 3dStudioMax via the ColladaMax plug-in. Once the scene is exported, we need a
converter to read the generated XML schema in OSG. For that purpose, a COLLADA
importer is available. It is compiled in a dynamic link library (.dll) and is readable by OSG
(Figure 5.5). To load the scene we merely invoke its COLLADA file in a simple routine.

Figure 5.5: The pipeline from 3dStudioMax to OSG

5.2. Character animation

5.2.1. Animation with OSG

In 3D graphics, animation techniques are incredibly varied. Keyframing, parametric
interpolation, procedural animation, motion capture, etc. are all well known. Each of
these methods has advantages and drawbacks, but some are not suitable for real-time
animation53.

In this project, we use motion capture to record the user’s movements, which then
have to be applied to the virtual avatar in real-time. We already considered the motion
capture aspect in chapter 4; we will now focus on the animation of the virtual character.

First, let us clarify how the animation works in OSG. OSG uses the animation path
technique. This method consists in building the trajectory of an object using a path
object. The path object defines the animation path that a particular object follows
(Figure 5.6). It contains all the information about the object’s position, orientation and
scale at each time-step. The translation and scale are represented by a 3-vector and the
rotation by a quaternion.

53 L. Moccozet, « Facial and Body Animation » Master course, University of Geneva, May 2006.

COLLADA

Exporter

COLLADA

Importer

COLLADA

File
 3DsMax OSG

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 37 MAS thesis

Figure 5.6: A cube with its animation path over time

To assign a path to a specific object, we must retrieve its corresponding node in the
scene hierarchy. Once we have a pointer to this node, we go down a few levels to find
its world transform matrix (4x4 matrix). We add the animation path to this transform
node. The final result gives the current spatial state of the object.

Now that we understand how OSG manages basic animation, we will consider the
animation of a virtual character.

5.2.2. Skinning and general concepts

To animate virtual characters and particularly vertebrates, skeletal animation is a
technique widely used in computer animation. A character is represented in two parts: a
surface representation used to draw the character (called the skin) and a hierarchical set
of bones used for animation only (called the skeleton).

The skeleton consists in a series of bones connected together by joints. Each joint has
a transformation (up to 3 DOF and usually stored as transform matrix) and an optional
parent bone. The full transform of a child node is the product of its parent transform and
its own transform (see chapter 6.1). As a result, the skeleton forms a hierarchy (Figure
5.7) where the root is a joint with 6 DOF. For example moving a thigh-bone will make
the lower leg move too. When the character is animated, the joints change their
transformation over time, under the influence of some animation controller.

t2

t0 t1

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 38 MAS thesis

Figure 5.7: Hierarchy structure of a Biped skeleton

As a final result, we want to animate the surface representation of the body, so let us
explain now how the bones influence this process. Each bone is associated to a part of
the character's visual representation (mesh). It is what we call skinning54. For a
polygonal mesh character, the more widespread method is to assign a group of vertices
to each bone. For example, an upper-leg bone would be associated with the vertices of
the model's thigh. Vertices can usually be associated to multiple bones. The influence of
each bone on each vertex is defined by a scaling factor called vertex weight, or blend
weight (Figure 5.8).

Figure 5.8: Skin in T-pose (left), skeleton in T-pose (middle) and vertex weights map (right)

54 N. Magnenat-Thalmann, R. Laperrière, D. Thalmann. Joint-Dependent Local Deformations
for Hand Animation and Object Grasping. Proc. Graphics Interface'88, Edmonton. 1988.

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 39 MAS thesis

To calculate the final position of a vertex, we have to apply each bone’s
transformation to its initial position. In order to take into account the vertex weights,
these transformations are previously scaled regarding their corresponding weight. This
algorithm is called matrix palette skinning, because the set of bone transformations form
a palette which the skin vertex can choose from.

In OSG, the process to animate virtual characters is the same as for simple objects
(see previous section). We must first retrieve all the bone nodes in the scene graph. An
animation path is then assigned to the transform node of each bone. At every time-step,
the skin updating routine is called. This skinning method was entirely integrated by our
assistant, Etienne Lyard, in the COLLADA importer.

5.2.3. Application structure and management

Let us take a closer look at the application structure. The program contains 3 major
classes:

• viewer.cpp displays the virtual environment

• tarsus.cpp retrieves the real-time animation data from the Vicon

• bipedAnim.cpp updates the character animation

To manage these 3 classes, we created two threads. The first takes care of the
display and the virtual character animation. The second retrieves the new data from the
motion capture real-time engine (Figure 5.9).

 Both threads need to have access to the data sent by the Vicon, hence the use of a
global variable to store the incoming transform matrix. It will then undergo different
mathematical calculations which will be explained in chapter 6. Finally the position, scale
and quaternions are extracted from the final matrix and applied to the OSG animation
path.

Figure 5.9: Collaborative diagram of the application

VIEWER.CPP

TARSUS.CPP

Thread 1

Update animation

Send new bones
transformations

Thread 2
 BIPEDANIM

 .CPP

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 40 MAS thesis

5.3. Configuration file

For our program to be more flexible, we decided to create a configuration file. If the
scene, avatar skeleton or an IP address changes, the user should still be able to use our
program without having to change the source code. Therefore, all variable parameters
are stored in the configuration file (see annex 1):

• IP Address of the machine running Tarsus

• Name of the COLLADA scene file (3D environment and avatar)

• Name of the root of the bones hierarchy (for a 3dStudioMax biped: BIP01)

• Names of all the other bones

• Position (x, y, z) of the bottom left corner of the screen in the 3D environment

When the application starts, the system asks for a configuration file with the
extension: .pina. It can then update all these parameters accordingly.

Clementine Lo December 2006

MIRALab - University of Geneva 41 MAS thesis

6. Mathematical aspects of the animation

6.1. Global and relative coordinates

OSG works with relative coordinates: the matrix for each node expresses its relative
position regarding its parent node. Therefore, we have to convert the global coordinates
into relative ones (Figure 6.1). The formula to do this is pretty simple:

childparentrel ΜΜ=Μ −1

Mchild is the global matrix of the child joint.

Mparent is the global matrix of the parent joint.

Figure 6.1: Global and relative coordinates

We can also calculate the global matrix of a joint according to its relative one:

relparentchild ΜΜ=Μ

NB: If we do not have the global matrix of the parent, we can find it by applying this
formula recursively:

relrelreltroochild ΜΜΜΜ=Μ 12...

Mparent

Mchild

Mrel

Clementine Lo December 2006

MIRALab - University of Geneva 42 MAS thesis

6.2. Mirror illusion: symmetry and position in the virtual world

When looking through a mirror, the image we perceive is that of an identical human
being positioned at an equal distance from the mirror in a symmetrical way (Figure 6.2).
To achieve this illusion in 3D, several transformations have to be taken into account.

Figure 6.2: Mirror illusion

The most obvious of course is the symmetry. When the model in the real world
moves its left arm, the avatar has to move its right arm. Therefore, a symmetry matrix
has to be applied to the whole animation.

Figure 6.3: Mirror illusion matrix transformations

MR

REAL WORLD VIRTUAL WORLD
Mirror

MmirrorRMmirrorV

symmetryMV

REAL WORLD VIRTUAL WORLD
Mirror

 D2 D1
 D2 = D1

L R L R

Clementine Lo December 2006

MIRALab - University of Geneva 43 MAS thesis

Also we need to create a correspondence between the two worlds. The position of
the virtual human (MV) has to be calculated by taking into account not only the real
human’s position (MR) but also the mirror’s position (Figure 6.3). To achieve this, we use
a point that is the same in both worlds and for which we have the coordinates in both
worlds: namely a point on the “mirror” (projection screen). For obvious practical
reasons, we used the bottom left corner. We measured its position in the real world
(MmirrorR). Its position in the virtual world (MmirrorV) is given to us by 3dStudioMax.

The symmetry is applied to the matrix of the “real” model in mirror coordinates and
then converted into the virtual world coordinates.

The final formula:

()[]RmirrorRsymmmirrorVV ΜΜΜΜ=Μ −1

6.3. Symmetry with quaternions

6.3.1. A naïve approach

After we implemented the transformations described in the previous section, the
virtual model didn’t take into account rotations around the z-axis. We realized that when
we apply symmetry to such rotations they don’t turn in the same direction.

 Since the matrix calculation was correct, we thought the problem might come from
the retrieval of the quaternions (as described in chapter 5, OSG uses quaternions to
apply rotations in the animation.)

First of all, here are a few formulas describing quaternions and their correspondence
with a rotation matrix:

Here is the rotation matrix for a rotation around z of angle θ:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=Μ

1000
0100
00cossin
00sincos

θθ
θθ

θR

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=Μ

100
0cossin
0sincos

θθ
θθ

θR

The corresponding quaternion is given by:

);(vsquaternion);;(cbav =

2
cosθ=s ⎟

⎠
⎞

⎜
⎝
⎛=

2
sin,0,0 θv 0=a 0=b

2
sin θ=c

or, rotational
part only

Clementine Lo December 2006

MIRALab - University of Geneva 44 MAS thesis

Therefore, the matrix can also be written as:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−
−−−+
+−−−

=Μ
22

22

22

2212222
2222122
2222221

basabcsbac
sabccascab
sbacscabcb

Rθ

Now, let us take an example to see what happens to the quaternions when we apply
symmetry to a rotation around the z-axis.

Here is a transformation matrix with a translation of -3 along the x-axis and 2 along
the y-axis and a rotation of 90 degrees around z:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

1000
0100
2001
3010

If we apply a symmetry along the y-axis, we have:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−
−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
2001
3010

1000
0100
2001
3010

1000
0100
0010
0001

We can notice that the upper 3X3 matrix is not a rotation matrix anymore. Therefore,
it cannot be transformed into quaternions! If we express this matrix regarding its
correspondence with a quaternion we get:

1221022022
0220221122
0221220221

22

22

22

=−−=+=−
=−=−−−=+
=+−=−=−−

basabcsbac
sabccascab
sbacscabcb

The contradiction is obvious.

Caecilia Charbonnier December 2006

MIRALab - University of Geneva 45 MAS thesis

6.3.2. A better approach

To solve this problem, we simply added an initial matrix. This matrix is the result of
the “mirror correspondence” explained in chapter 6.2:

()1−ΜΜΜ=Μ mirrorRsymmmirrorVinit

 It is included in the scene graph before the root node of the bones hierarchy (Figure
6.4) instead of being added while updating the animation. Thus the animation routine
can be computed normally whilst the virtual avatar will still be displayed symmetrically.

Adding this init matrix or mirror matrix involves retrieving the root node of the bones
hierarchy. The name of the root joint is in the configuration file (see chapter 5.3), so we
merely have to run through the OSG hierarchy and find the corresponding node. This
process is done only once when loading the program. This solution hence reduces the
computational cost, which is a noticeable improvement for a real-time application.

Figure 6.4: Position of the mirror matrix in the OSG hierarchy

OSG Root

 Mirror matrix

Bones
hierarchy

Root Joint
Environment

Clementine Lo December 2006

MIRALab - University of Geneva 46 MAS thesis

6.4. Pivots

6.4.1. Pivots orientation

The biped pivots in 3DStudioMax all have different orientations. So if we update the
animation in OSG directly with the matrix given by the Vicon, it isn’t applied correctly:
the axes are not in the right direction. To solve this problem we have to add another
matrix transformation. Even though their pivots don’t have the same orientation, the
transformation applied to a bone from timet0 to timet1 in the virtual world has to be the
same as that of its corresponding bone in the real world (Figure 6.5).

To simplify our calculations and since we have already dealt with this matter in sub-
chapter 6.1, we will use the same coordinate system for the virtual world and the real
world.

Figure 6.5: Relative transformation in real and virtual world

In order to match the biped to the Vicon data, we need a calibration posture. The
subject and the virtual human are in the same position during the calibration. We can
then calculate the relative position for each animation frame. We will now go through
the whole process more thoroughly.

6.4.2. Calibration

During the calibration process, the program stores the global matrices for each bone
of both the real and the virtual model. For the real model, these are given by the Vicon
(MRCalib). For the virtual model, they have to be recalculated from the local matrices in
the OSG hierarchy (MVCalib), (see sub-chapter 6.1).

REAL WORLD VIRTUAL WORLD

Mirror

T1

T2

T1 = T2

Clementine Lo December 2006

MIRALab - University of Geneva 47 MAS thesis

6.4.3. Animation

To animate one of our virtual model’s bones we need its new global matrix (MV). We
will then convert it to the local matrix (see sub-chapter 6.1) before updating the
corresponding bone in OSG.

To obtain an accurate animation, the relative transformation from the calibration pose
to the animation pose for each frame has to be the same for the real (MRrel) and the
virtual model (MVrel) (Figure 6.6).

Figure 6.6: Relative transformation correspondence

The Vicon gives us the new global matrix of the real model (MR). We can then
calculate the relative transformation:

RRcalibRrel ΜΜ=Μ −1

REAL VIRTUAL

MRrel MV

T0

T0

T1

MRcalib

MVcalib

MVrel

MR

T1

Clementine Lo December 2006

MIRALab - University of Geneva 48 MAS thesis

Since MRRel should be equal to MVRel we should have:

RrelVcalibV ΜΜ=Μ

But this is not the case given that the pivots have different orientations. Indeed the
translations will then be applied on the wrong axis.

Let us consider a translation of 2 on the x-axis and a rotation of -90 degrees around
the z-axis.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=Μ

1000
0100
0001
2010

Rrel

The virtual calibration matrix is a translation of 2 on the x-axis, –1 on the y-axis and a
rotation of +90 degrees around the z-axis.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=Μ

1000
0100
1001

2010

Vcalib

We should have the final global transformation matrix (MV) as a translation of 4 on
the x-axis, -1 on the y-axis and no rotation. But if we calculate the matrix multiplication
we get:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
2010

2001

1000
0100
1001

2010

1000
0100
0001
2010

The translations are not what we expected (2 on the x-axis and -2 on the y-axis).

Clementine Lo December 2006

MIRALab - University of Geneva 49 MAS thesis

Indeed when one multiplies two matrices this is what happens:

()()
()()

() []()2112121

222

111

TRTRR
TR
TR

+=ΜΜ
=Μ
=Μ

The translation is applied relatively to the previous matrix’s rotation, which is not
what we want. We would like to have:

()()212121 TTRR +=ΜΜ

For this reason we have to apply the translations and rotations separately. Finally we
get:

 Rotation: RVcalib
T

RRcalibRRRV ΜΜΜ=Μ

 TVcalibTRcalibTRTV Μ+Μ−Μ=Μ

As the rotations in OSG are expressed in quaternions, it would be simpler to multiply
quaternions instead of matrices. Indeed “the composition of rotations is given by the
multiplication of the corresponding quaternions”55. Given two quaternions:

kzjyixwq
kzjyixwq

11111

00000

+++=
+++=

The multiplication of q0 and q1 is:

=10qq)(10101010 zzyyxxww −−−

+
+
+

)(
)(
)(

10101010

10101010

10101010

wzxyyxzw
xzwyzxyw
yzzywxxw

+−+
++−
−++

k
j
i

55 G. Guillard, Un espace de représentation pour l’étude conjointe de la morphologie et de la

fonctionnalité des surfaces articulaires, Université de Rennes, 2005, p.58

Translation:

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 50 MAS thesis

6.5. Conclusion and implementation

To conclude, we have to put all these formulas together. We will summarize the
situation by examining the implementation. But before that, let us notify a particularity in
OSG: the transposition of the matrices. When first implementing the formulas, we
reported errors because OSG uses transposed matrices. It means that all matrices
calculation must be done in reverse. For example, if you want to multiply A by B, you
usually post-multiply A with B but in OSG you must pre-multiply. The matrix
multiplication is not commutative (that is AB≠BA), so we obtained surprising results!

Here is how the program proceeds (an abstract of the code is provided in annex 2):

1. When the application starts, the system asks for a configuration file which
gives all the parameters required to run the program (joint names, root joint,
virtual mirror’s position, etc.)

2. The 3D virtual scene is loaded.

3. The mirror matrix is added on top of the root node.

4. The OSG hierarchy is traversed and with the joint’s names we retrieve the
corresponding nodes. For each node, we go down a few levels to find its
world transform matrix.

5. The system requests and retrieves information data of the various channels. It
then waits for the user to start the calibration.

6. When the user presses the ‘c’ key, the calibration starts. The program stocks
the global transform matrices for each bone of both the real and the virtual
model. For the real model, these are given by the Vicon. For the virtual
model, they have to be calculated from the local matrices in the OSG
hierarchy.

7. The system waits for the user to start the animation.

8. When the user presses the ‘s’ key, the animation starts. For each frame, the
application retrieves each bone’s global matrix from the Vicon. We then
compute the different transformations to get the new global transformation
matrix for the virtual character.

9. As OSG only deals with relative coordinates, this global matrix is converted to
a local matrix.

10. Finally, the final matrix forms a new animation path for the bone.

We have now taken into account all the transformations to apply the real world
animation to our virtual avatar according to the mirror illusion.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 51 MAS thesis

The following figure gives a schematic view of the whole process (Figure 6.7):

Figure 6.7: Schematic view of the program process

Start Config file
3D scene
loading Mirror illusion

matrix adding

Bone’s nodes
retrieving

Start capture
(VICON) Calibration Animation

 ‘c’ key ‘s’ key

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 52 MAS thesis

7. Camera transformation

7.1. Introduction

In computer graphics, a camera object is used to simulate the human eye (Figure
7.1). The camera has a position, a direction and specific parameters such as lens
parameters.

OSG provides two kinds of camera. The first type is a camera node that can be
inserted in the scene hierarchy. It offers several interesting possibilities such as the
setProjectionMatrixAsFrustum() method which we could have used (see chapter 7.2).
Unfortunately it cannot be animated, so it is not what we are seeking. It is usually used
only for texture rendering. The second kind is a camera object available in the OSG
viewer implementation. The default camera used to display the virtual world corresponds
to this type. Moreover it can be animated. It is generally used in computer games to
simulate the view from a moving object (trucks, space ships, etc.). It is exactly what we
need for our project.

Figure 7.1: Example of a virtual camera in a scene and resulting rendering

When looking at a mirror, the image we perceive changes depending on our position.
To ensure the “mirror illusion”, we have to reproduce these changes in our application.
When the user moves in the capture volume, another view of the virtual environment
has to be projected on the screen. To achieve this effect, we first have to track the
position of the model’s head in order to know where the user is looking. We can then
update the projection volume and display it on the screen. The calculations involved are
exposed in the next sub-chapter.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 53 MAS thesis

7.2. Mathematical aspects

7.2.1. Camera position

First we have to determine the position of the user’s head in the virtual world’s
coordinates. The Vicon gives us its position in real world coordinates, so we just have to
convert it. We will achieve this by using our “conversion point”, a point that is the same
in both worlds and for which we know the coordinates in both worlds: the bottom corner
of the mirror/projection screen (Figure 7.2).

Figure 7.2: Camera position

We have:

RmirrorRmirrorVV ΜΜΜ=Μ −1

7.2.2. Projection matrix

Now that we know where the camera is in the virtual space, we can calculate its new
projection matrix. As the screen’s size is fixed, not only the view point will change
depending on the camera’s position but also the focal length. Indeed, the focal length
influences the field of view, i.e. how much of the entire scene appears in the image. The
farther the user is from the screen, the wider the lens (Figure 7.3).

MR

REAL WORLD VIRTUAL WORLD
Mirror

MmirrorR MmirrorV

MV

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 54 MAS thesis

Figure 7.3: Cameras focal lengths

OSG provides a very useful method: setFrustum(). This method takes six parameters
in input: left, right, bottom, top, near, far (Figure 7.4).

Figure 7.4: Camera’s frustum

As we have the camera’s position (xcamera, ycamera, zcamera), the size of the screen
(width, height) and the coordinates of the mirror/screen’s lower corner (xmirror, ymirror,
zmirror), these parameters are pretty easy to calculate:

Mirror

85mm 35mm

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 55 MAS thesis

near
top
bottom
right
left

=
=
=
=
=

mirrorcamera

mirrorcamera

cameramirror

yy
bottomheight
zz
leftwidth
xx

−
−
−
−
−

As for the “far” value, we chose 800 (8 meters), which is approximately the size of
our environment.

7.3. Implementation

As stated in the introduction, we use the default camera from the OSG viewer. First
we update its position in regard to the actor’s head. While animating the different bones,
the system checks if the current bone is the head. If it is the case, it invokes the
“camera update” routine. The head’s transformation matrix is stored and used to
calculate the camera’s new position (see previous section).

Second we calculate its new projection matrix. We use the setFrustum() method as
described in the previous section. In OSG, the frustum is defined with negative and
positive values, the “centre” being on the line of sight. For example, the left value is
negative whereas the right value is positive (same thing for the bottom and top values).
To ensure this rule, we simply check the sign value of each parameter and change it if
necessary. (See annex 3 for an abstract of the code.)

Finally, the view matrix (i.e. the position of the camera) and frustum are affected to
the camera viewer and the system displays the new camera projection.

When computing the camera position, we had some problems of orientation, resulting
from a matrix mismatch in world orientation. Normally the view matrix represents a ‘Z’
up coordinate system, but the camera in OSG represents a ‘Y’ up coordinate system. The
issue is to provide a rotation from ‘Y’ up to ‘Z’ up. This can be easily done by rotating the
view matrix of -90 degrees about the x-axis.

 With the camera update, the “mirror illusion” is much more convincing. One has the
impression that the screen is a window on a virtual world. Thus, the immersion, a major
feature in virtual reality, is noticeably enhanced.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 56 MAS thesis

8. Tests and results

8.1. Tests

The application was tested with different subjects (two females and one male). Here
is an account of a typical session.

First, we have to set up the motion capture session as described in chapter 4.2.2. We
calibrate the system (static and dynamic calibration). The model is equipped with the
markers. He/she adopts the T-posture and we capture a range of motion to calibrate the
subject. The system is now ready and we can start capturing movements (open real-
time mode, start Tarsus.)

We then load the OSG application (VirtualMirror.exe), and provide it with the
configuration file. The 3D virtual world appears on the screen without any
transformation (neither camera nor symmetry). The program then waits for the user’s
input (press ‘c’) to start the calibration process. The subject adopts the T-posture (same
position as the virtual model) for the system to match their respective positions (Figure
8.1). Finally, the user presses the ‘s’ key to start the simulation. The model can then
move freely in the capture space and will have the impression of looking at a window on
a virtual world in which a virtual avatar moves symmetrically to him/her.

Figure 8.1: Real and virtual models in calibration posture

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 57 MAS thesis

The next figure shows the initial test results (without all the required transformations)
(Figure 8.2) and the final results (Figure 8.3).

Figure 8.2: Initial result without required pivots transformations.

Figure 8.3: Subjects during test sessions at MIRALab

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 58 MAS thesis

8.2. Results

We achieved the desired result, as the mirror effect and virtual character’s real-time
animation are accurately reproduced. Still we consider that a few improvements could be
made.

Our first concern is the smoothness of the animation. Due to the amount of
calculations needed for the animation, the computational cost is quite significant. Even
though the 3D environment and the avatar have been optimised for real-time, we still
had undesired time lapses. In an attempt to improve this we tried running each
application on a different CPU. Since the communication between the applications (iQ,
Tarsus and VirtualMirror) is done over the network, we can run them on different
machines for optimum performance. Although there was some improvement, the result
still wasn’t totally satisfying. When using the Vicon 8i system, we noticed that the iQ
real-time viewer had delay problems. Therefore we thought the setback might come
from the Vicon system itself and not our application. Indeed there was a noticeable
improvement in the quality of the data after the purchase of the new MX system.
Unfortunately the virtual avatar still shakes sometimes when performing fast motions.
We found out that this effect is due to the OSG interpolation used when computing
object’s animation paths. Indeed, OSG needs many control points over time to setup a
good animation path. As we are working in real-time we cannot estimate future bone
transformations, so only one control point (the current bone’s position) can be given to
the path. This hence induces errors when interpolating between control points.

Another setback is that we do not take into account the morphology of the subject.
The same motion cannot be applied to differently proportioned skeletons without
causing undesirable effects. It has to be modified or “retargeted”. Motion retargeting56 is
an important research topic in computer graphics. However, in our case, it is easier to
adapt the virtual skeleton to the actor’s proportions, rather than retarget the motion.
One solution would be to rescale the biped during the calibration. We could retrieve the
size of each bone from the Vicon and apply it to the virtual avatar’s skeleton.
Unfortunately, we didn’t have enough time to add this feature.

Finally, we deemed that the lighting’s quality in OSG was not good enough. We tried
to import lights directly from 3dStudioMax but the result still wasn’t satisfactory. Indeed
lights are not considered in the same way in OSG and 3dStudioMax. OSG employs the
same method as OpenGL. Therefore the 3dStudioMax parameters are not taken into
account. We have to add them if we want to get a better approximation of the final
3dStudioMax result (Figure 8.3). At the moment, this has to be done manually for each
light. For this reason, we only added essential factors such as spot exponent or spot
cutoff. However a complete lighting integration would represent a great upgrading.

56 Michael Gleicher, Retargeting motion to new characters, SIGGRAPH 98, pp.33-42, 1998.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 59 MAS thesis

Figure 8.3: 3dStudioMax rendering and OSG rendering with and without lights

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 60 MAS thesis

9. Conclusion and future work
This project was very interesting as it concerned many topics in computer graphics. It

involved a broad spectrum of tools and techniques. Working in real-time was also very
motivating as it is very interactive and we had to find solutions to overcome the
processing time-constraints.

9.1. Real-time cloth simulation

Unfortunately we were not able to integrate the real-time cloth animation simulation
as it is not complete yet. Although our program works fine at this time, we cannot assert
that the animation’s quality won’t be affected once we add the clothes.

Cloth simulation requires “advanced and complex computational methods where most
important key issues remain computation speed and efficiency [:] the mechanical
representation should be accurate enough to deal with the nonlinearities and large
deformations occurring at any place in the cloth, such as folds and wrinkles. Moreover,
the garment cloth interacts strongly with the body that wears it, as well as with the
other garments of the apparel. This requires advanced methods for efficiently detecting
the geometrical contacts constraining the behaviour of the cloth, and to integrate them
in the mechanical model (collision detection and response).” 57 (Figure 9.1) Even though
for real-time applications specific approximation and simplification methods are made,
giving up some of the mechanical accuracy, this additional computational cost might
reduce the frame rate dramatically. In this case further research would have to be made
to optimise the application.

Figure 9.1: Efficient and robust collision detection processing

Furthermore we could add an interface to make our application more user-friendly. At
the moment the user has to enter the different commands (start calibration, start
animation) directly in the Command prompt. A graphic interface would be especially
useful to help the user choose different garments (Figure 9.2).

57 P. Volino, F. Cordier, N. Magnenat-Thalmann, From early virtual garment simulation to

interactive fashion design, Computer-Aided Design Journal (CAD journal), Elsevier, volume 37, pp
593-608. March 2005.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 61 MAS thesis

Figure 9.2: Possible user interface for VirtualMirror.exe

9.2. Body retargeting

As stated in the previous chapter, we do not deal with the model retargeting. Another
way of taking into account the user’s morphology would be to use 3D scanning. 3D
scanners available nowadays can capture a body’s shape almost instantly (Figure 9.3).

Figure 9.3: 3D scanner and resulting 3D model

Clothes selection

Load avatar Load clothes

Start animation

Dresses
Pants
Skirts
Tops
Overalls
Jackets

Red dress
Green dress
Grey dress

VirtualMirror

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 62 MAS thesis

By using the resulting 3D model instead of the generic avatar, the correspondence
with the user would be perfect. However, this cannot be done automatically. Before
converting the scanned data into a complete, readily animatable model, several
problems need to be solved.

“It is frequently necessary to simplify the models created from the scanned data in
order to reduce the computational burden.”58 Indeed although these models are usually
very realistic and visually convincing, they contain a large number of polygons, which is
unacceptable for a real-time application.

Additionally “apart from solving the classical problems such as hole filling and noise
reduction, the internal skeleton hierarchy should be appropriately estimated in order to
make them move.”59 Several approaches have been taken. Most of them involve the
placement of external landmarks60, markers or feature points. The most likely position of
the bones can then be calculated according to these reference marks.

58 J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models, WSCG

Jan. 2003, p.1
59 N. Magnenat-Thalmann, H. Seo, F. Cordier, Automatic Modeling of Virtual Humans and Body

Clothing, Journal of Computer Science and Technology, Vol.19 No6, Beijing: Chinese Academy of
Sciences, Dec. 2004, p.1

60 J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models, WSCG
Jan. 2003, p.2

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 63 MAS thesis

10. Acknowledgements
We would like to thank:

Professor Nadia Magnenat-Thalmann and Professor Daniel Thalmann for giving us the
opportunity to realise this project

Etienne Lyard, Dr. Gwenael Guillard and Alessandro Foni for their help, patience, and
precious advice

All the people at MIRALab for their help and technical support

11. Bibliography
P. S. Strauss and R. Carey, An object-oriented 3D graphics toolkit, In Edwin E.
Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, p. 341–
349, July 1992.

N. Magnenat-Thalmann, F. Dellas, C. Luible, P. Volino, From Roman Garments to
Haute-couture Collection with the Fashionizer Platform, Virtual Systems and Multi
Media, Japan, Nov, 2004

P.Volino, Collision Detection for Deformable Objects, Course Notes: Collision
Detection and Proximity Queries, ACM SIGGRAPH’ 04, Los Angeles, p.19-37, 2004

G. Walters, The story of Waldo C. Graphic, Course Notes: 3D Character Animation by
Computer, ACM SIGGRAPH '89, Boston, p. 65-79, July 1989.

G. Walters, Performance animation at PDI, Course Notes: Character Motion Systems,
ACM SIGGRAPH 93, Anaheim, CA, p. 40-53, August 1993

H. Tardif, Character animation in real time, Panel: Applications of Virtual Reality I:
Reports from the Field, ACM SIGGRAPH Panel Proceedings, 1991

B. Robertson, Moving pictures, Computer Graphics World, Vol. 15, No. 10, p. 38-44,
October 1992.

T. Molet, R. Boulic, D. Thalmann. A Real-Time Anatomical Converter for Human
Motion Capture, 7th EUROGRAPHICS Int. Workshop on Computer Animation and
Simulation'96, Poitier, France, G. Hegron and R. Boulic eds., ISBN 3-211-828-850,
Springer-Verlag Wien, p. 79-94, 1996.

T. Molet, R. Boulic, D. Thalmann, Human Motion Capture Driven by Orientation
Measurement, Presence, MIT, Vol.8, N°2, p. 187-203, 1999.

T. Molet, Z. Huang, R. Boulic, D. Thalmann, An Animation Interface Designed for
Motion Capture, Proc. Of Computer Animation'97, Geneva, ISBN 0-8186-7984-0, IEEE
Press, p. 77-85, June 1997.

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 64 MAS thesis

L. P. Nedel, T. Molet, D. Thalmann, Animation of Virtual Human Bodies Using Motion
Capture Devices, Proc. 2nd Brazilian Workshop on Virtual Reality - WRV'99, p. 139-
150, Marilia, SP, Brazil, November, 1999.

N.I. Badler, M. J. Hollick, J. P. Granieri, Real-Time Control of a Virtual Human Using
Minimal Sensor, Presence: Teleoperators and Virtual Environments, Vol. 2, Number 1,
MIT, p. 82-86, Winter 1993.

R. Okada, B. Stenger, T. Ike, N. Kondoh, Virtual Fashion show using real-time
markerless motion capture, ACCV (2), p. 801-810, 2006.

L. Vacchetti, V. Lepetit and P. Fua, Stable Real-Time 3D Tracking Using Online and
Offline Information, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 26, Nr. 10, pp. 1391-1391, 2004.

N. Magnenat-Thalmann, S. Hadap, P. Kalra, State of the Art in Hair Simulation,
International Workshop on Human Modelling and Animation, Seoul: Korea Computer
Graphics Society, pp. 3-9, June 2002, p.1

Dan Piponi and George Borshukov, Seamless Texture Mapping of Subdivision Surfaces
by Model Pelting and Texture Blending, Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, ISBN:1-58113-208-5, pp. 471–478,
2000

The Virtual Soldier Research Team (VSR) Program, End-of-Year Technical Report for
Project Digital Human Modeling and Virtual Reality for FCS, Center for Computer-
Aided Design, College of Engineering, The University of Iowa

J. Rohlf and J. Helman, IRIS performer: A high performance multiprocessing toolkit
for real–Time 3D graphics, p. 381–395.

N. Magnenat-Thalmann, R. Laperrière, D. Thalmann. Joint-Dependent Local
Deformations for Hand Animation and Object Grasping, Proc. Graphics Interface'88,
Edmonton. 1988.

G. Guillard, Un espace de représentation pour l’étude conjointe de la morphologie et
de la fonctionnalité des surfaces articulaires, Université de Rennes, 2005, p.58

Michael Gleicher, Retargeting motion to new characters, SIGGRAPH 98, pp.33-42,
1998.

P. Volino, F. Cordier, N. Magnenat-Thalmann, From early virtual garment simulation
to interactive fashion design, Computer-Aided Design Journal (CAD journal), Elsevier,
volume 37, pp 593-608. March 2005.

J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models,
WSCG Jan. 2003, p.1

N. Magnenat-Thalmann, H. Seo, F. Cordier, Automatic Modeling of Virtual Humans
and Body Clothing, Journal of Computer Science and Technology, Vol.19 No6, Beijing:
Chinese Academy of Sciences, Dec. 2004, p.1

J. Oliveira, D. Zhang, B. Spanlang, B. Buxton, Animating Scanned Human Models,
WSCG Jan. 2003, p.2

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 65 MAS thesis

Courses

D. Konstantas, « Infrastructure de communication » Master course, University of
Geneva, February 2005.

L. Moccozet, « Facial and Body Animation » Master course, University of Geneva, May
2006.

Manuals and tutorials

Curious Lab, Poser User’s Guide

Discreet, Character Studio R2 User’s Guide

MIRALab - University of Geneva, Vicon User Manual

Vicon, ViconiQ tutorials and User’s guide

Internet

MIRALab - University of Geneva
http://www.miralab.ch

Open Scene Graph (OSG)
http://www.openscenegraph.org

Vicon
http://www.vicon.com

The Digital Journalist
http://www.digitaljournalist.org/issue0309/lm20.html

Jim Henson Productions
http://www.henson.com/

Muppet Wiki
http://muppet.wikia.com/wiki/Waldo_C._Graphic

SimGraphics
http://www.simg.com/

Polhemus
http://www.polhemus.com/

Motion Analysis
http://www.motionanalysis.com/

AR Tracking
http://www.ar-tracking.de/

Ascension Technology
http://www.ascension-tech.com/

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 66 MAS thesis

National Center for Supercomputing Applications (NCSA) - University of Illinois at
Urbana-Champaign
http://archive.ncsa.uiuc.edu/Cyberia/VETopLevels/Images/Mario.gif

The Advanced Computing Center for the Arts and Design – Ohio State University
http://accad.osu.edu/~waynec/history/lesson11.html

CVLab – Ecole Polytechnique Federale de Lausanne (EPFL)
http://cvlab.epfl.ch/research/augm/augmented.html

PhoeniX Technologies
http://www.ptiphoenix.com/application/animation/live_animation.php

Nasa ZeroG Experiments
http://zerog.jsc.nasa.gov/Other/Feb_12_2004_Robotic/subviewer.cgi

MotionAnalysis application
http://www.motionanalysis.com/applications/movement/gait/gait.html

Innovative Sports Training
http://www.innsport.com/MMRGaitNONAV.htm

Curious Labs
http://www.curiouslabs.com

Autodesk
http://www.autodesk.com

Digimation
http://www.digimation.com

Bones Pro review article
http://www.rendernode.com/articles.php?articleId=69

Cinema 4D 9.5 review by c4dcafe.com
http://www.c4dcafe.com/reviews/R95/page2.html

Teo Jakob
http://www.teojakob.ch

The NYU movement group
http://movement.nyu.edu/projects/nyulab.html

OpenGL
http://www.opengl.org/

OpenScenegraph Plugins
http://www.openscenegraph.org/osgwiki/pmwiki.php/UserGuides/Plugins

XML
http://www.xml.com/

Sony Computer Entertainment
http://www.scee.com/index.jhtml

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva 67 MAS thesis

Khronos group
http://www.khronos.org/collada/

COLLADA show (Siggraph ’05)
http://www.khronos.org/collada/presentations/collada_siggraph2005.pdf

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva Annexe I

Annexe

Configuration file

config.pina

129.194.68.189 ………………………… IP Address of Tarsus
scene.dae ……………………… COLLADA file name
Bip01 …………………….. Root of the bones hierarchy
23 ………………… Number of bones to load (except the root)
Bip01_L_Thigh
Bip01_L_Calf
Bip01_L_Foot
Bip01_L_Toe0
Bip01_R_Thigh
Bip01_R_Calf
Bip01_R_Foot
Bip01_R_Toe0
Bip01_Spine
Bip01_Head
Bip01_L_Clavicle
Bip01_L_UpperArm Bone’s names
Bip01_L_Forearm
Bip01_L_Hand
Bip01_R_Clavicle
Bip01_R_UpperArm
Bip01_R_Forearm
Bip01_R_Hand
Bip01_Pelvis
Bip01_Neck
Bip01_Spine1
Bip01_Spine2
Bip01_Spine3
-160 -95 45 ………………… Virtual mirror translation (x,y,z)

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva Annexe II

Bones animation

/***
* UPDATE THE BONES
* Create a new animation path for the corresponding bone.
* Parameter:
* - CURRENT the bone being considered
***/
osg::AnimationPath* BipedAnim::createAnimationPath(int current)
{
 osg::AnimationPath* animationPath = new osg::AnimationPath;
 animationPath->setLoopMode(osg::AnimationPath::NO_LOOPING);
 osg::Matrixd M;
 osg::Vec3 t, tMVGCalib, tMRG, tMRGCalib;
 osg::Quat r, rMVGCalib, rMRG, rMRGCalib, r1;

 // compute pivot/coordinate systems transformation
 tMVGCalib = _MVGCalib[current].getTrans(); tMRG = _MRG[current].getTrans();
tMRGCalib = _MRGCalib[current].getTrans();
 t.x() = tMVGCalib.x() + tMRG.x() - tMRGCalib.x(); t.y() = tMVGCalib.y() +
tMRG.y() - tMRGCalib.y(); t.z() = tMVGCalib.z() + tMRG.z() - tMRGCalib.z();

 M.invert(_MRGCalib[current]);
 _MRG[current].get(rMRG); M.get(rMRGCalib);
_MVGCalib[current].get(rMVGCalib);
 r1 = multiQuat(rMRG, rMRGCalib);
 r = multiQuat(r1, rMVGCalib);

 // compose the matrix from the resulting translation/rotation
 _MVG[current].makeIdentity();
 _MVG[current].set(r);
 _MVG[current](3,0) = t.x(); _MVG[current](3,1) = t.y(); _MVG[current](3,2) =
t.z();

 // compute the local transformation
 calculateLocalMatrices(current);

 // extract translation/quaternion/scale from transformation
 osg::Vec3 position = _MVG[current].getTrans(); osg::Quat orientation;
_MVG[current].get(orientation); osg::Vec3 scale = _MVG[current].getScale();
 animationPath->insert(0.0,osg::AnimationPath::ControlPoint(position,
orientation, scale));

 return animationPath;
}

Caecilia Charbonnier and Clementine Lo December 2006

MIRALab - University of Geneva Annexe III

Camera update

/***

* UPDATE CAMERA
* Update camera from the current head position.
* Size of the screen: width=320, height=240.
**
***/
void BipedAnim::UpdateCamera(int index)
{
 // screen size
 double height = 240.0, width = 320.0;
 double x = _Mvm(3,0), y = _Mvm(3,1), z = _Mvm(3,2); // screen position
 osg::Matrixd M1, M2;

 // first compute the new position of the camera
 _Mcam.makeIdentity(); M1.invert(_Mrm); M2.setTrans(_MRG[index].getTrans());
 _Mcam.preMult(_Mvm);
 _Mcam.preMult(M1); // Mvm * Mrm-1
 _Mcam.preMult(M2); // (Mvm * Mrm-1) * tMRG

 // then, compute camera view as Frustum
 _left = x - _Mcam(3,0);
 if(_left > 0) _left = -(_left);
 _right = width + _left;
 _bottom = _Mcam(3,2) - z;
 if(_bottom > 0) _bottom = -(_bottom);
 _top = height + _bottom;
 _zNear = _Mcam(3,1) - y;
 if(_zNear < 0) _zNear = -(_zNear);
 _zFar = 800.0;

 _cameraOn = true;
}

	Virtual_mirror
	Annexe

