
Physics-based character animation controllers
for videogame and virtual reality production

Joan Llobera∗
joan.llobera@artanim.ch
Artanim Foundation
Geneva, Switzerland

Joe Booth
joe@joebooth.com

Independent Researcher
Seattle , USA

Caecilia Charbonnier
caecilia.charbonnier@artanim.ch

Artanim Foundation
Geneva, Switzerland

ABSTRACT
Physics-based character animation has dramatically evolved over
the last five y ears. However, i t i s s till d ifficult to use the se tech-
niques within the usual production pipeline. This is due both to
technical factors, such as the fact that you need quite some spe-
cialised knowledge to set up and train these controllers, as well as
to practical factors, such as the fact that the proposed solutions are
difficult to integrate with content production tools. We present a
physics-based animation system designed to work easily within a
standard animation pipeline. The main benefits are three: it works
within a standard game engine commonly used in videogame and
virtual reality production (Unity3D), it supports the procedural
creation of physics-based controllers from a rigged character with
kinematic animations (and optionally a kinematic controller), and
that it is available open source.

KEYWORDS
3D character animation, Physics-based animation, Deep Reinforce-
ment Learning
ACM Reference Format:
Joan Llobera, Joe Booth, and Caecilia Charbonnier. 2021. Physics-based
character animation controllers for videogame and virtual reality production.
In Poster MIG’21. ACM, New York, NY, USA

1 INTRODUCTION
Physics-based character animation has dramatically evolved in the
last five years. However, the integration of these techniques in video
game or virtual reality production projects is still challenging. This
is caused by a combination of factors, both practical and technical.

Currently, the main method used to create interactive animations
in videogame or virtual reality productions is based on segment-
ing animation sequences, and defining points of transitions among
them. Generally, these sequences and transitions are mapped to
states and transitions in a state machine. The transitions are then
triggered by binary conditions. In this way, animation cycles or
one-shot animations are triggered by logical conditions, evaluated

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Poster Motion, Interaction and Games, November 2021, Lausanne (Switzerland)

within the game loop, depending on custom game logic or by the
input from the user. These state machines are available as animation
engines, and are built-in modules in what are the de facto standards
of video game production (Unity3D and Unreal Engine). A rela-
tively recent alternative that has seen adoption by the video game
industry is the use of Motion Matching [2]. Motion Matching uses
a different principle, where possible transitions between a database
of animations is pre-computed, on the basis of pose similarity. The
benefit of this technique is that it provides much smoother transi-
tions, and more diverse combinations of the reference animation
fragments. Some rare games (for example, Totally Accurate Battle
Simulator, by Landfall Games1), use physics-based animation, but
those remain the exception, rather than the norm.

Here we introduce a new system for physics-based character
animation that makes particular emphasis on integratingwith estab-
lished production pipelines. Our goal is to simplify the implemen-
tation of physics-based character animation. We place particular
emphasis in developing a solution that works within the current
production pipeline, leveraging the know how of technical artists.
This implies a system that uses rigged characters animated with
existing animation controllers, and modular enough to easily inte-
grate different physics-based animation systems.

Our solution works within a standard game engine commonly
used in videogame and virtual reality production (Unity3D), it is
available open source2 and it works with any kind of kinematic
controller: we have validated the approach with a character that
has a simple animation, an interactive controller based on a hierar-
chical state machine, and a motion matching algorithm. A modular
architecture also simplifies exploring the main elements involved
in a physics-based controller separately (reward function, early
termination criteria, motor update method).

2 ANIMATION SYSTEM
2.1 Design Decisions
Our aim is to create a system that can work easily within the exist-
ing production pipelines. Aiming for this, we have developed an
architecture that completely separates animations in the kinematic
space and in the physical space. As such, each character is animated
using four different skeletal hierarchies:

(1) The reference character. This rigged character renders
the sequences of animations used as reference, as controlled
by the animation controller. This can be in principle any
animation controller, but we have evaluated our solution

1https://landfall.se/totally-accurate-battle-simulator
2https://joanllobera.github.io/marathon-envs/

https://landfall.se/totally-accurate-battle-simulator
https://joanllobera.github.io/marathon-envs/

Motion, Interaction and Games, November 2021, Lausanne (Switzerland) Llobera, et al.

with the hierarchical state machine built in Unity3D and an
off-the-shelf available motion matching animation engine.

(2) The reference rag doll. A rag doll that translates these
movements to rigid bodies, used as targets for the physics
controller.

(3) The rag doll controller.A rag doll controlled by the physics-
based controller that applies forces to constrained rigid bod-
ies, trying to match the orientations found in the previous
rag doll.

(4) The target animation rig. This translates the outcome of
the physics-based controller to cinematic trajectories applied
on a copy of the original character, on which the cinematic
controller was applied. This last step is generally absent
from physics-based animation systems, and it significantly
simplifies the use of those in production projects.

We keep a separate skeleton for each step of the process, and
process them sequentially: the output of moving the first skeleton
is used for the second skeleton, etc. This simplifies considerably
the debugging of the system, and the adjustment of different parts.
In addition, the skeletons related with cinematic animation and
with physics can be updated in separate threads (typically, these
are updated in the main update loop and in the physics loop, re-
spectively).

2.2 Creation of the physical controller
To transform the reference animations to the space of physical
actions, train the physics controller, generate the actions, and then
transform the resulting movements back to the space of the rigged
character the simplest, most robust strategy seems to have, as much
as possible, a one to one correspondence between the different
parts. To do this, we generate procedurally the two hierarchies of
rigid bodies in order to match exactly the hierarchy of joints in the
rigged character, and do a copy of the rigged character to render
the outcome of the physics-based controller in a skinned character.
This last body is the final animation outcome, and its pose is the
direct application of the rotations of the rag doll controller.

The rigid body articulations are placed at the same position that
the joints of the skinned character. Colliders are placed between
the joints. The height of the collider corresponds directly to the
distance between the joints, and the width is fixed. For the joints
forming the spine, colliders are placed horizontally, the width of
the collider is determined by the distance between spine joints and
the height is calculated from the distance between the spine and
the shoulder articulations. The result is a ragdoll that has roughly
the same volume than the skinned character. The weight of each
rigid body is calculated from a fixed mass density (1000𝑘𝑔/𝑚3),
together with the volume of the colliders. The weight was placed
in the middle of the rigid body. Finally, to ensure a perfect match
between the two rag dolls, the second one was created procedurally,
from the first.

To determine the degrees of freedom 𝑁𝑑𝑜𝑓 in the different joints
and to fix the articulation limits for each joint we let the kinematic
character move with the reference animations. From these move-
ments we determine the range of motion of the physical actuators
decomposing the rotations in twist and swing components. We

determine the degrees of freedom for each limb by considering ev-
ery range of motion in every articulation that goes above a certain
threshold (5º). Finally, for each degree of freedom we configure the
range of motion of the physical actuators to encompass the range
of motion of the parsed animations, adding +10º and -10º to the
maximum and minimum values of the range of motions. This is
done to give extra space to the physics controller, otherwise the
result of the training shows movements that are too rigid. The space
of observations is also calculated automatically with the following
formula:

𝑁𝑜𝑏𝑠 = 𝑁𝑑𝑜𝑓 + 𝑁𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟𝑠 ∗ 6 ∗ 2 + 𝑁𝑠𝑡𝑎𝑡𝑠 (1)
In the previous formula, 𝑁𝑑𝑜𝑓 is the degrees of freedom pre-

viously reported, 𝑁𝑠𝑒𝑛𝑠𝑜𝑟𝑠 is the number of elements that detect
physical contacts (2 per feet), 𝑁𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑟𝑠 is the number of colliders
placed between the articulation joints in the ragdoll (in our case, 15),
and 𝑁𝑠𝑡𝑎𝑡𝑠 is the number of additional measures used in the final
reward designed. The result of generating our physics controller
automatically is comparable to previous papers (see Table 1).

Model Rigid Bodies Degrees of Freedom

Peng et al. 2018 [3] 13 34
Bergamin et al. 2019 [1] 23 54

Our system 22 49
Table 1: A comparison of our procedural system with previ-
ous physics-based animation systems

3 RESULTS
Our solution has been tested on the main OS platforms (Windows,
OS X, ubuntu) and it trains successfully. Once the training environ-
ment is created procedurally, the motor update is done with simple
PD controllers, as available within the Unity3D engine. we have
also explored using the feedback loop found in [1], although not
found significantly different results. To facilitate comparison, we
use the same rewards and training parameters of DReCon [1].We
hope different people will use this tool to explore how to integrate
their animated characters with a physics controller, and that it sim-
plifies its adoption in video game and virtual reality productions.
In our experience, the main factor affecting training is the num-
ber of observations, and much less to the reward terms. We also
hope this will help having a common ground for the comparison of
different techniques for physics-based animation controllers and
that other researchers and hobbyists to explore novel techniques
for interactive character animation.

REFERENCES
[1] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.

DReCon: data-driven responsive control of physics-based characters. ACM Trans-
actions On Graphics (TOG) 38, 6 (2019), 1–11.

[2] Simon Clavet. 2016. Motion matching and the road to next-gen animation. In Proc.
of GDC.

[3] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

	Abstract
	1 Introduction
	2 Animation system
	2.1 Design Decisions
	2.2 Creation of the physical controller

	3 Results
	References

