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Abstract—Musculoskeletal disorders are the most notorious
and common causes of severe long-term pain and physical dis-
ability, affecting hundreds of millions of people across tle world.
To prevent and treat these disabling conditions, we are builing
an accurate generic lower limb model (consisting of bones ah
soft tissues) that can be simulated in motion, using individal
multimodal data. For clinical every-day use, medically rekvant
validation and an efficient interactive visualization framework
are required. Relevant patient's anatomical, kinematical and
mechanical data extracted from images (MRI), motion captue
(dynamic MRI, optical motion capture) and other modalities
(body scanning, EMG, mechanical properties measuring dege),
as well as statistical data, are adjusting the generic modeb the
patient. A fully functional model will be presented with some
individual case studies and medical validation.

Fig. 1. Shoulder Musculature Modeling: One of the first attempts to model
|. INTRODUCTION musculoskeletal structures (CHARM project [5]).
Since more than two decades, research in medical imaging

has been continuously developed. Many aspects have been
addressed as segmentation, topological modeling, simonlat The musculoskeletal system is very complex and large
of physical processes, analysis of movements and validafio anatomical variations exist among individuals. As a result
models [1], [2], [3], [4]. These efforts were primarily doted no modeling method has proven to be generic, automatic and
toward the display and visualization of extracted data fromobust. In many cases, anatomical modeling is interactidke a
Computed Tomography (CT) or Magnetic Resonance Imagitime consuming [9], [10], [11], or not individualized [12].
(MRI). Nowadays, clinicians can obtain a complete 3D viewor deriving the motion of the skeleton, various methods
of the volume of a human organ. One of the first generic modeith direct access to the bone (e.g., intra-cortical pin3],[1
that demonstrated the complete pipeline from the acquoiisitiexternal fixators [14], percutaneous trackers [15]) havenbe
of images to the construction of the topological model ard iproposed. These techniques are robust, but are strongly inv
physics based simulation was done inside the EuropeandProfve. Therefore, the optical motion capture system seems to
CHARM [5]. In this project, we worked on the simulation ofbe the non-invasive solution for studying the kinematics of
the shoulder. We used CT data coming from the visible datse joint. However, due to soft tissue deformation, reflecti
set (Fig. 1) and we interpreted and labeled these images [Blarkers are subject to large displacement during movement
Then, we used a contour based technique to allow a contfelg., 20 mm for a marker stuck on the thigh). The resulting
of the shape and the resolution of the geometry. We alsstimation are thus embedded with artifact. To minimize thi
developed a topological modeler that played the role of a 3¥fect, mathematical approaches have been implementéd [16
connectivity graph of anatomical elements for the shodlder [17], [18], but these techniques are limited to the use of non
In order to simulate the motion of the shoulder, finite eletmesubject-specific models or are based on invalid assumptions
methods and kinematic joint motions were used [8]. This this paper, we would like to illustrate the progress thas h
kind of approach needs a lot of research and attention, amekn done recently in 3D functional modeling. As an example,
is heavily going on. This 3D functional modeling researctve will discuss the research done in two research projdus: t
is a truly multidisciplinary approach that requires knodde European project 3D Anatomical Human [19] and the Swiss
in system theory, mechanical engineering, mechanicaydesiNational project Co-Me [20]. Both projects aim to work on
human-machine interface, optimization, medicine, angtonthe functional simulation of the hip joint from MRI data. The
orthopaedics and radiology. main innovation in the pipeline from segmentation toward 3D



simulation is that 1) we work from MRI data and not CT, 2) 3D Body Scanning: Body scanning is a modality that
which is less invasive and 2) the novelty of the algorithmdigitalizes accurate skin models of the complete body (accu
allows the process to be almost automatic and most of trecy~ 1 mm). The volunteer undergoes a 3D body scan (Vitus
cases in real-time. In addition, we try to take advantage Bfo, Vitronic, Germany) with the same markers set-up used fo
our know-how in scan technology and motion capture in ordezcording movements with the optical motion capture system
to visualize a full human with outer skin and hip organs i this study, the use of body scan information is twofold.
a functional simulation. We also do not work anymore on @n the one hand, the 3D surface of the subject’s body is
generic patient only, but on patient-specific case studies.generated and integrated in the visualization framework. O
means that in the next future, we will be able to see in 3D eattte other hand, the position of the markers on the skin can be

patient’s articulations and further predict what will happif
a specific motion is performed.

.
A. Satic Acquisition

DATA ACQUISITION

1) Magnetic Resonance Imaging (MRI): In case of mus-

culoskeletal modeling, the visualization of soft and bon

tissues is fundamental. Despite a good visualization okbpn
CT is not truly appropriate for soft tissue examination su

as muscles and ligaments. Furthermore, CT is an invasi/e

modality whereas it is admitted that MRI does not crea
any harmful ionizing radiation [21]. The diversity of facso

accounted by the MRI signal (e.g., proton density,
relaxation times, fluid flow) grants to MRI a unique versatili
For instance, a fluid flow/ tissue relationship is exploitad

This provides an essential biomechanical parameter [22].

MRI protocols depend on the medical context and are suB}

jected to the ubiquitous image quality-speed trade-offic&i

we want to fully cover the hip and the thigh, we devised 4

extracted from the scan data, since the subject is captutbd w
the markers. This information is further used in the optical
motion capture process (more details in Section I1V-B).

B. Kinematical Acquisition

1) Optical Motion Capture (MoCap): Optical motion cap-
g}lre provides a very practical and realistic way to animate
virtual human bodies and to record joint kinematics. Such

cfystems are not invasive and can be combined with forceplat

d EMG for assessing musculoskeletal dynamics. Unlike
%ther motion acquisition devices, the optical system adltie
recording of a large range of motion. The markers trajeesori

T1 and 7€ tracked within a 45.3 m3 measurement volume (3.6 X

4.2 x 3 m) using 8 infrared cameras (Vicon MX 13i, Oxford

iMetrics, UK), sampling at 120 Hz. Two clusters of six 7 mm

Diffusion tensor MRI to extract the muscle fiber direction

markers are affixed onto the lateral and frontal aspects thf bo
thighs. Six markers are also stuck on the pelvis (Fig. 4A) Sk
\arkers are arranged to ensure their visibility to the camer
throughout the range of motion. Additional reflective maske

re distributed over the body to confer a more complete

protocol [23] that adjusts the slice thickness (from 2 mm fysualization from general to detailed. Data from the satsje

10 mm) according to the region of interest. Indeed, an ateur
(isotropic) acquisition of the whole area cannot be caraed

in a reasonable time from a clinical viewpoint. The result i

eventually a combination of different overlapping dataskat
are registered together (Fig. 2). The acquisitions areopmd
on a 1.5T Intera MRI system manufactured by Philips Medic
Systems.

ool

Fig. 2. Static MRI protocol: e Axial 2D T1 Turbo Spin Echo (TSE),
TR/TE= 578/18 ms, FOV/Matrix= 40 cril2 x 512, thickness= 2 (hig1)),

4 (knees(3)) or 10 mm (thigh(2)), gap/FA= 0 mm/90 deg, resolution=
0.78 x 0.78 mm. e Axial 3D T1 Gradient-Echo (GE), TR/ITE= 20/7 ms,
FOV/Matrix= 20 cm256 x 256, thickness= 2 mm(4), gap/FA= 0 mm/50

deg, NSA/resolution= B/78 x 0.78 mm. Reproduced from [23]

are acquired from ordinary and sportive activities.

2) Dynamic MRI (dMRI): Motion analysis can improve
@e diagnosis, especially the understanding of joint eelat
pathologies (e.g., hip impingements). Dynamic MR imaging
therefore appears as an appropriate modality to track thet ex
gjotion of musculoskeletal structures. But dMRI is signifi-
cantly affected by technical and safety limitations (eggadi-
ent strength, slew rate, signal-to-noise ratio). Fast sttpns
are thus performed at the expense of significant reductions
in image quality and spatial coverage. Movements are also
restricted by the MRI tube dimensions. Open MRI offers
promising alternatives for the examination of a larger ranfy
motion, but the magnetic field strengtk 1 Tesla) limits the
resolution. In order to avoid the shortcomings of large ooti
analysis in dMRI, we will exploit later on the capabilitie§ o
MoCap. Nevertheless, dMRI will be useful in validating the
estimation of bone poses from MoCap data in case of low
amplitude movements (more details in Section V). The chosen
protocol for dMRI is a fast gradient echo sequence [24].

IIl. GENERIC MODELS CONSTRUCTION

A. Interactive Reconstruction

From a MRI dataset of a healthy patient, acquired with
the proposed protocol, an interactive segmentation [23] is
performed. A 2-simplex mesh [25], topologically equivalen
to the structure to segment (e.g., a sphere or a cylinder),



is deformed to match the structure boundaries. The meshriswhich time-discretized differential equations relatatcle
adapted according to a series of constraints defined as inttates to forces. Time-integration is performed with a lstab
nal, external and boundary points. In an interactive mannand robust integrator [28], [29]. The whole process uses a
these points are placed by medical experts. To ensure thalti-resolution framework that accounts the differentdab
mesh quality an optimization process, based on geometrit@®Ds. A bottom-up forces propagation scheme [30] between
and topological considerations, is applied. The resulthis t the different resolutions linearly combines lower with tnég
interactive segmentation is a collection of generic moaéls resolution forces. This strategy brings robustness anedsfme
the various soft (cartilages, ligaments, muscles, skid)lmmy the segmentation procedure.
structures. Various levels of details (LODs) for each magh anternal forces regulate shape evolution by enforcing shap
then computed for a later exploitation in the individuatizeconstraints. This is mainly done by using prior information
segmentation procedure. that rely on assumptions about surface regularity (smooth-
_ _ ness, curvature) and statistics on shapes variabilityed®as
B. Joint Coordinate Systems on a database of segmented models, a Principal Components
To report joint motion in a repeatable way that is indeAnalysis expresses shape variations and rejects invatigesh
pendent from the acquisition frame, standard joint co@tin configurations similarly to [31], [32]. Topological conaints
systems are computed from anatomical landmarks [26], [28ke also exploited by individualizing the attachments.ir@pl
defined on the 3D reconstructed surface of the generic bonesntrol points are projected onto bone surfaces, while- soft
These systems are implemented following the Internation@sues vertices are attached to the spline through covili
Society of Biomechanics [27] (ankle and hip) and the seminghr coordinates. Mass maodification [33] is used to constrain
work of Grood and Suntay [26] (knee). They have been chosgiese vertices. Finally, additional constraints are ola@iby
to describe joint motion in clinically relevant terms (j.e.exploiting the medial axis representation of soft modeks i
flexion/ extension, abduction/ adduction, internal/ exéér muscles [30].
rotation). External forces consider image information (e.qg., intgmnsio-
files and gradients) and non-penetration constraintsnéitie
profiles [32], [25], [30] are intensity neighborhoods extet
The human musculoskeletal system anatomy exhibits valong normals of models. Based on appropriate similaritg-me
ious organs interrelationships. For example, muscles &re gres, image forces are hence derived by registering generi
tached to bones, cartilages are fixed to specific bone arggagensity profiles with those of the evolving models. Catiis
etc. This prior topological information can be taken intcp,and"ng [34] and response [35] techniques prevent models

account to improve the segmentation or the computation génetrations through speed/ position alterations or penal
functional parameters (e.g., the hip joint center as deedri forces.

in Section IV-C). In soft tissue segmentation, topological . .
constraints are therefore introduced for modeling boné/ s®. Skin Registration

tissue attachments. To this end, a method based on Cardinqirom the 3D body scanner, a body contour of the Subject is
splines was developed to generate and parametrize attathmigoduced and accurately fitted to a generic body model [36].
areas on the generic models. We defined about 50 genefis model needs to be replaced in the 3D space according
attachment splines for the hip and the thigh, mainly from thg the position of the various organs, reconstructed from MR
literature on anatomy. images. Moreover, the relative position of the skin markers
is unknown with respect to the underlying bone. Since the
. subject was scanned with the skin markers, marker positions
A. Segmentation are extracted from the scan data using a least-squaresespher
During the individualization phase, we apply a segmentatiditting technique. Subsequently, a registration methodsisdu
procedure that is equivalent to a Model to Image Registmatido conform the body model and the extracted marker positions
Generic models are firstly coarsely initialized before beinto the generic skin segmented from MR images. Since the
deformed to match patient uniqgue anatomy. The power BRI skin model is limited to the pelvis and the femur, the
using and registering generic shapes is that exact geametegistration method works in two phases (Fig. 3): 1) The body
correspondences are obtained (i.e., morphological festumodel surface from the pelvis to the knee is conformed to the
have the same vertex indexes across individual models)RI skin model through barycentric coordinates, previgusl
A Thin-Plate Splines interpolation procedure initializd®e stored from a single subject manual registration. 2) Rigid
generic bone models by using landmarks, placed at speciggistrations are performed for the other body parts (ites,
anatomical positions. On the other hand, soft tissueslizid- two shanks and the torso) using a least-squares minimizatio
tion exploits a skinning technique based on segmented borigisally, markers which are attached to the body surface\voll
During the segmentation, models are considered as deftemahe transformation of the body model. As a result, the body
meshes, driven by internal and external forces. Mesh esrtianodel is replaced in the MRI space. A calibration frame is
are thus modeled as particles with mass evolving under thiso obtained where the relative position of the skin marker
Newtonian law of motion. This creates a Particle Systemith respect to the underlying bone, is now established.

C. Topological Constraints

IV. INDIVIDUALIZATION



markers is computed for each segment. The solution is given
by minimizing the sum of squared distances between actual
and model-determinated marker positions. This is bagicall
a least-squares minimization for which we use the rfsqp
optimizer [38].

V. VALIDATION AND RESULTS

To validate the automatic segmentation procedure, medical
experts performed manual segmentations on four datassts. F
lowing the generic construction approach, the requiredbrarm
Fig. 3. A) The markers and the body model segmented into Z:ptrée of constraints points, necessary to reach satisfactomitses
yellow part is conformed to the MRI skin model and the greenispare are placed. These “gold-standard” results were compared to
rigidly registered B) The MRI skin model C) Registration utts those of the automatic segmentation. The mean distance (std

dev.) was 1.25 mm (1 mm) for bones and 1.7 mm (1.8 mm)
) ) for muscles. Since the expert editing remains prone to ®rror
C. Motion Computation and the average distance is close to the image resolutian (

In kinematic studies, the true hip joint center (HJC) is unmm), the proposed method is considered as accurate. Skin
known since most techniques use external movement (motsegmentation took around 60 sec and was visually validated.
capture data) or estimate its position relative to anatamidoreover, the overall segmentation required around 15 min o
landmarks. With the present idea, the estimation of the 14JCd standard PC. This depicts a fast method given the complexit
first initialized with a geometrical approach: two topologfi of the task. Cartilages and ligaments segmentation caraot b
areas (the femoral head and the acetabulum) are fitted withaurately identified in MRI (except maybe in arthro-MRIhwit
sphere. Assuming a constant inter-articular distancep#®t contrast agent injection). Hence, a qualitative assessmas
estimate of the HJC is given by centering the two spheres ooanducted. According to clinicians, a good agreement betwe
the same point. Then, the algorithm adjusts the HJC by tgstiBD models and anatomical structures was found. Fig. 4B
points around the initial guess, the goal being to minimigpé h illustrates some of the results.
femur bones collisions during low amplitude circumductioriThe validation of the joint kinematics estimation has been
The validation of this method can be found in [23]. obtained using marker position data, collected during abdu
When the human motion is measured using an optical motiban motion patterns on 6 volunteers scanned with our dMRI
capture system, the internal bone remains inaccessibl¢hendprotocol. The subjects were equipped with external MRI-
resulting estimations are embedded with soft tissue atifacompatible marker sets and a tracking device was used to
(STA). Rigid motion of the bone segment can therefore nehsure the movements repeatability. For each instant frdmae
be robustly estimated from the markers trajectories, grles position and orientation of both the hip and femur bones were
STA is small. This “shifting” effect is very critical partitarly computed. The kinematics derived from the marker position
when precise analyses of the joint motion are needed. To dhta were compared with that of the MRI bone tracking.
fectively reduce STA, we propose to use a global optimiratidfhe root mean square reconstruction error was 2.3/3.9/4.1
that minimizes the error made globally for each instant #ammm in femur x/y/z translation and 2.3/1.4/1.9 deg in femur
on all the markers. Joint constraints are also applied s@ asotientation. From these results, the errors in femur rotedire
avoid non-physiological joint translation and dislocatio significantly reduced by applying the proposed method, with
During a movement, several components contribute to thespect to the traditional ones. The translation errorsaado
motion of a skin marker. Assuming that the pelvis motiomore significant, but are strongly related to the magnituide o
is known, the HJC can slightly move during the rotation adkin deformations during movements. Indeed, our validgatio
the thigh. This introduces one translati®h and one rotation data only featured markers on the thigh. Hence, we could only
R. Additionally, a rigid displacement is observed due to STAalculate the error made on the femur translation, which, as
which is denoted by another translatidh. The motion of a said previously exhibits a lot of skin motion and was thus
marker with respect to the pelvis can hence be described digcarded by our approach.
three transformations successively applied. Since anratecu The proposed framework is applied to medical case studies.
estimation of bothl, and Ty is hardly possible, one of the For example, relevant clinical output was obtained on a
translations must be discarded. Previous works [14], [3%ludy involving professional ballet dancers. The motoati
showed that, for the thigh, the magnitude of the STA is greati®r this study was that dancers activities (extreme movesyen
than the displacement of the joint center. Therefore, wédgec repeated motion) can be at the origin of joint pathologies.
to compute the best estimate 6f and to assume thdf, is Based on patient-specific reconstructed data, a support for
close from null. Oppositely, for the pelvis, it appears ttted standard morphological measurements [39], [40] was pro-
STA remains small. Thus, for this bone we assume That posed, improving the (subjective) reading of medical insage
close from null and we estimatE. instead. Finally, the best (Fig. 4D). Moreover, the visualization in real-time of patt-
transformation that minimizes the error made globally om trspecific joints in extreme postures led the validation afichl




Fig. 4. A) Skin markers configuration B) Modeling resultsnbs (left), cartilages and ligaments (top) and musclesredlby anatomical groups (bottom)
C) Real and computed postures from MoCap data (grand plé@yl@phological measurements: alpha angle (top), acetatudrsion (middle and bottom)

assumptions. Indeed, unexpected bone/ cartilage caltisiccomplex mechanical behavior of musculoskeletal tissugs, (e
were observed during these extreme movements, estalglisiiphasic, viscoelastic, non linear, etc.) will be simuthte

a correlation between the contact zone and diagnosed tesidnghlight abnormal stress distributions in case of patyicial
This confirms that motion can be a factor of joint degenenatiopatients. This will demand effort in volumetric meshing,
Fig. 4C shows examples of computed dancer’s postures. simulation and mechanical parameters measurement.
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based on static radiological images and external palp#tian
give information about the patients anatomy and joint mitybil
However, in most of the pathological cases, it is also imgart

to resort to biomechanics methodologies and motion prdgoco
to analyze more precisely the pathology and to determine its
causes. The proposed framework is specifically designed in
this aim. The developed tools and the combined internalébon
and soft tissues)/ external (skin) functional visualiaatiof

the subject provides a more comprehensive view of the joint
configuration and is expected to support the diagnosis.
Future work will address the following points that are sched
uled in Co-Me [20] and 3D Anatomical Human [19] projects.
Firstly, a more thorough validation of the multimodal maddgl|

will be conducted. Segmentation accuracy will be improved,
especially regarding cartilage extraction, as currenttuan-
titative validation is missing. Following, additional dMR
experiments will be carried out to estimate the error made on
the pelvis translation. Secondly, additional acquisiti@vices
such as EMG and force-plate will be added to the framework
to provide valuable biomechanical parameters. Finallg th
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