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Abstract—Musculoskeletal disorders are the most notorious
and common causes of severe long-term pain and physical dis-
ability, affecting hundreds of millions of people across the world.
To prevent and treat these disabling conditions, we are building
an accurate generic lower limb model (consisting of bones and
soft tissues) that can be simulated in motion, using individual
multimodal data. For clinical every-day use, medically relevant
validation and an efficient interactive visualization framework
are required. Relevant patient’s anatomical, kinematical and
mechanical data extracted from images (MRI), motion capture
(dynamic MRI, optical motion capture) and other modalities
(body scanning, EMG, mechanical properties measuring device),
as well as statistical data, are adjusting the generic modelto the
patient. A fully functional model will be presented with some
individual case studies and medical validation.

I. I NTRODUCTION

Since more than two decades, research in medical imaging
has been continuously developed. Many aspects have been
addressed as segmentation, topological modeling, simulation
of physical processes, analysis of movements and validation of
models [1], [2], [3], [4]. These efforts were primarily directed
toward the display and visualization of extracted data from
Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI). Nowadays, clinicians can obtain a complete 3D view
of the volume of a human organ. One of the first generic model
that demonstrated the complete pipeline from the acquisition
of images to the construction of the topological model and its
physics based simulation was done inside the European Project
CHARM [5]. In this project, we worked on the simulation of
the shoulder. We used CT data coming from the visible data
set (Fig. 1) and we interpreted and labeled these images [6].
Then, we used a contour based technique to allow a control
of the shape and the resolution of the geometry. We also
developed a topological modeler that played the role of a 3D
connectivity graph of anatomical elements for the shoulder[7].
In order to simulate the motion of the shoulder, finite element
methods and kinematic joint motions were used [8]. This
kind of approach needs a lot of research and attention, and
is heavily going on. This 3D functional modeling research
is a truly multidisciplinary approach that requires knowledge
in system theory, mechanical engineering, mechanical design,
human-machine interface, optimization, medicine, anatomy,
orthopaedics and radiology.

Fig. 1. Shoulder Musculature Modeling: One of the first attempts to model
musculoskeletal structures (CHARM project [5]).

The musculoskeletal system is very complex and large
anatomical variations exist among individuals. As a result,
no modeling method has proven to be generic, automatic and
robust. In many cases, anatomical modeling is interactive and
time consuming [9], [10], [11], or not individualized [12].
For deriving the motion of the skeleton, various methods
with direct access to the bone (e.g., intra-cortical pins [13],
external fixators [14], percutaneous trackers [15]) have been
proposed. These techniques are robust, but are strongly inva-
sive. Therefore, the optical motion capture system seems to
be the non-invasive solution for studying the kinematics of
the joint. However, due to soft tissue deformation, reflective
markers are subject to large displacement during movement
(e.g., 20 mm for a marker stuck on the thigh). The resulting
estimation are thus embedded with artifact. To minimize this
effect, mathematical approaches have been implemented [16],
[17], [18], but these techniques are limited to the use of non
subject-specific models or are based on invalid assumptions.
In this paper, we would like to illustrate the progress that has
been done recently in 3D functional modeling. As an example,
we will discuss the research done in two research projects: the
European project 3D Anatomical Human [19] and the Swiss
National project Co-Me [20]. Both projects aim to work on
the functional simulation of the hip joint from MRI data. The
main innovation in the pipeline from segmentation toward 3D



simulation is that 1) we work from MRI data and not CT,
which is less invasive and 2) the novelty of the algorithms
allows the process to be almost automatic and most of the
cases in real-time. In addition, we try to take advantage of
our know-how in scan technology and motion capture in order
to visualize a full human with outer skin and hip organs in
a functional simulation. We also do not work anymore on a
generic patient only, but on patient-specific case studies.It
means that in the next future, we will be able to see in 3D each
patient’s articulations and further predict what will happen if
a specific motion is performed.

II. DATA ACQUISITION

A. Static Acquisition

1) Magnetic Resonance Imaging (MRI): In case of mus-
culoskeletal modeling, the visualization of soft and bony
tissues is fundamental. Despite a good visualization of bones,
CT is not truly appropriate for soft tissue examination such
as muscles and ligaments. Furthermore, CT is an invasive
modality whereas it is admitted that MRI does not create
any harmful ionizing radiation [21]. The diversity of factors
accounted by the MRI signal (e.g., proton density, T1 and T2
relaxation times, fluid flow) grants to MRI a unique versatility.
For instance, a fluid flow/ tissue relationship is exploited in
Diffusion tensor MRI to extract the muscle fiber direction.
This provides an essential biomechanical parameter [22].
MRI protocols depend on the medical context and are sub-
jected to the ubiquitous image quality-speed trade-off. Since
we want to fully cover the hip and the thigh, we devised a
protocol [23] that adjusts the slice thickness (from 2 mm to
10 mm) according to the region of interest. Indeed, an accurate
(isotropic) acquisition of the whole area cannot be carriedout
in a reasonable time from a clinical viewpoint. The result is
eventually a combination of different overlapping datasets that
are registered together (Fig. 2). The acquisitions are performed
on a 1.5T Intera MRI system manufactured by Philips Medical
Systems.

Fig. 2. Static MRI protocol : • Axial 2D T1 Turbo Spin Echo (TSE),
TR/TE= 578/18 ms, FOV/Matrix= 40 cm/512× 512, thickness= 2 (hip(1)),
4 (knees(3)) or 10 mm (thigh(2)), gap/FA= 0 mm/90 deg, resolution=
0.78 × 0.78 mm. • Axial 3D T1 Gradient-Echo (GE), TR/TE= 20/7 ms,
FOV/Matrix= 20 cm/256 × 256, thickness= 2 mm(4), gap/FA= 0 mm/50
deg, NSA/resolution= 2/0.78 × 0.78 mm. Reproduced from [23]

2) 3D Body Scanning: Body scanning is a modality that
digitalizes accurate skin models of the complete body (accu-
racy≈ 1 mm). The volunteer undergoes a 3D body scan (Vitus
Pro, Vitronic, Germany) with the same markers set-up used for
recording movements with the optical motion capture system.
In this study, the use of body scan information is twofold.
On the one hand, the 3D surface of the subject’s body is
generated and integrated in the visualization framework. On
the other hand, the position of the markers on the skin can be
extracted from the scan data, since the subject is captured with
the markers. This information is further used in the optical
motion capture process (more details in Section IV-B).

B. Kinematical Acquisition

1) Optical Motion Capture (MoCap): Optical motion cap-
ture provides a very practical and realistic way to animate
virtual human bodies and to record joint kinematics. Such
systems are not invasive and can be combined with force-plates
and EMG for assessing musculoskeletal dynamics. Unlike
other motion acquisition devices, the optical system allows the
recording of a large range of motion. The markers trajectories
are tracked within a 45.3 m3 measurement volume (3.6 x
4.2 x 3 m) using 8 infrared cameras (Vicon MX 13i, Oxford
Metrics, UK), sampling at 120 Hz. Two clusters of six 7 mm
markers are affixed onto the lateral and frontal aspects of both
thighs. Six markers are also stuck on the pelvis (Fig. 4A). Skin
markers are arranged to ensure their visibility to the cameras
throughout the range of motion. Additional reflective markers
are distributed over the body to confer a more complete
visualization from general to detailed. Data from the subjects
are acquired from ordinary and sportive activities.

2) Dynamic MRI (dMRI): Motion analysis can improve
the diagnosis, especially the understanding of joint related
pathologies (e.g., hip impingements). Dynamic MR imaging
therefore appears as an appropriate modality to track the exact
motion of musculoskeletal structures. But dMRI is signifi-
cantly affected by technical and safety limitations (e.g.,gradi-
ent strength, slew rate, signal-to-noise ratio). Fast acquisitions
are thus performed at the expense of significant reductions
in image quality and spatial coverage. Movements are also
restricted by the MRI tube dimensions. Open MRI offers
promising alternatives for the examination of a larger range of
motion, but the magnetic field strength (<1 Tesla) limits the
resolution. In order to avoid the shortcomings of large motion
analysis in dMRI, we will exploit later on the capabilities of
MoCap. Nevertheless, dMRI will be useful in validating the
estimation of bone poses from MoCap data in case of low
amplitude movements (more details in Section V). The chosen
protocol for dMRI is a fast gradient echo sequence [24].

III. G ENERIC MODELS CONSTRUCTION

A. Interactive Reconstruction

From a MRI dataset of a healthy patient, acquired with
the proposed protocol, an interactive segmentation [23] is
performed. A 2-simplex mesh [25], topologically equivalent
to the structure to segment (e.g., a sphere or a cylinder),



is deformed to match the structure boundaries. The mesh is
adapted according to a series of constraints defined as inter-
nal, external and boundary points. In an interactive manner,
these points are placed by medical experts. To ensure the
mesh quality an optimization process, based on geometrical
and topological considerations, is applied. The result of this
interactive segmentation is a collection of generic modelsof
the various soft (cartilages, ligaments, muscles, skin) and bony
structures. Various levels of details (LODs) for each mesh are
then computed for a later exploitation in the individualized
segmentation procedure.

B. Joint Coordinate Systems

To report joint motion in a repeatable way that is inde-
pendent from the acquisition frame, standard joint coordinate
systems are computed from anatomical landmarks [26], [27],
defined on the 3D reconstructed surface of the generic bones.
These systems are implemented following the International
Society of Biomechanics [27] (ankle and hip) and the seminal
work of Grood and Suntay [26] (knee). They have been chosen
to describe joint motion in clinically relevant terms (i.e.,
flexion/ extension, abduction/ adduction, internal/ external
rotation).

C. Topological Constraints

The human musculoskeletal system anatomy exhibits var-
ious organs interrelationships. For example, muscles are at-
tached to bones, cartilages are fixed to specific bone areas,
etc. This prior topological information can be taken into
account to improve the segmentation or the computation of
functional parameters (e.g., the hip joint center as described
in Section IV-C). In soft tissue segmentation, topological
constraints are therefore introduced for modeling bone/ soft
tissue attachments. To this end, a method based on cardinal
splines was developed to generate and parametrize attachment
areas on the generic models. We defined about 50 generic
attachment splines for the hip and the thigh, mainly from the
literature on anatomy.

IV. I NDIVIDUALIZATION

A. Segmentation

During the individualization phase, we apply a segmentation
procedure that is equivalent to a Model to Image Registration.
Generic models are firstly coarsely initialized before being
deformed to match patient unique anatomy. The power of
using and registering generic shapes is that exact geometric
correspondences are obtained (i.e., morphological features
have the same vertex indexes across individual models).
A Thin-Plate Splines interpolation procedure initializesthe
generic bone models by using landmarks, placed at specific
anatomical positions. On the other hand, soft tissues initializa-
tion exploits a skinning technique based on segmented bones.
During the segmentation, models are considered as deformable
meshes, driven by internal and external forces. Mesh vertices
are thus modeled as particles with mass evolving under the
Newtonian law of motion. This creates a Particle System

in which time-discretized differential equations relate particle
states to forces. Time-integration is performed with a stable
and robust integrator [28], [29]. The whole process uses a
multi-resolution framework that accounts the different model
LODs. A bottom-up forces propagation scheme [30] between
the different resolutions linearly combines lower with higher
resolution forces. This strategy brings robustness and speed to
the segmentation procedure.
Internal forces regulate shape evolution by enforcing shape
constraints. This is mainly done by using prior information
that rely on assumptions about surface regularity (smooth-
ness, curvature) and statistics on shapes variability. Based
on a database of segmented models, a Principal Components
Analysis expresses shape variations and rejects invalid shape
configurations similarly to [31], [32]. Topological constraints
are also exploited by individualizing the attachments. Spline
control points are projected onto bone surfaces, while soft-
tissues vertices are attached to the spline through curvilin-
ear coordinates. Mass modification [33] is used to constrain
these vertices. Finally, additional constraints are obtained by
exploiting the medial axis representation of soft models like
muscles [30].
External forces consider image information (e.g., intensity pro-
files and gradients) and non-penetration constraints. Intensity
profiles [32], [25], [30] are intensity neighborhoods extracted
along normals of models. Based on appropriate similarity mea-
sures, image forces are hence derived by registering generic
intensity profiles with those of the evolving models. Collision
handling [34] and response [35] techniques prevent models
penetrations through speed/ position alterations or penalty
forces.

B. Skin Registration

From the 3D body scanner, a body contour of the subject is
produced and accurately fitted to a generic body model [36].
This model needs to be replaced in the 3D space according
to the position of the various organs, reconstructed from MR
images. Moreover, the relative position of the skin markers
is unknown with respect to the underlying bone. Since the
subject was scanned with the skin markers, marker positions
are extracted from the scan data using a least-squares sphere
fitting technique. Subsequently, a registration method is used
to conform the body model and the extracted marker positions
to the generic skin segmented from MR images. Since the
MRI skin model is limited to the pelvis and the femur, the
registration method works in two phases (Fig. 3): 1) The body
model surface from the pelvis to the knee is conformed to the
MRI skin model through barycentric coordinates, previously
stored from a single subject manual registration. 2) Rigid
registrations are performed for the other body parts (i.e.,the
two shanks and the torso) using a least-squares minimization.
Finally, markers which are attached to the body surface follow
the transformation of the body model. As a result, the body
model is replaced in the MRI space. A calibration frame is
also obtained where the relative position of the skin markers,
with respect to the underlying bone, is now established.



Fig. 3. A) The markers and the body model segmented into 2 parts: the
yellow part is conformed to the MRI skin model and the green parts are
rigidly registered B) The MRI skin model C) Registration result

C. Motion Computation

In kinematic studies, the true hip joint center (HJC) is un-
known since most techniques use external movement (motion
capture data) or estimate its position relative to anatomical
landmarks. With the present idea, the estimation of the HJC is
first initialized with a geometrical approach: two topological
areas (the femoral head and the acetabulum) are fitted with a
sphere. Assuming a constant inter-articular distance, thebest
estimate of the HJC is given by centering the two spheres on
the same point. Then, the algorithm adjusts the HJC by testing
points around the initial guess, the goal being to minimize hip/
femur bones collisions during low amplitude circumduction.
The validation of this method can be found in [23].
When the human motion is measured using an optical motion
capture system, the internal bone remains inaccessible andthe
resulting estimations are embedded with soft tissue artifacts
(STA). Rigid motion of the bone segment can therefore not
be robustly estimated from the markers trajectories, unless the
STA is small. This “shifting” effect is very critical particularly
when precise analyses of the joint motion are needed. To ef-
fectively reduce STA, we propose to use a global optimization
that minimizes the error made globally for each instant frame
on all the markers. Joint constraints are also applied so as to
avoid non-physiological joint translation and dislocation.
During a movement, several components contribute to the
motion of a skin marker. Assuming that the pelvis motion
is known, the HJC can slightly move during the rotation of
the thigh. This introduces one translationTc and one rotation
R. Additionally, a rigid displacement is observed due to STA
which is denoted by another translationTs. The motion of a
marker with respect to the pelvis can hence be described by
three transformations successively applied. Since an accurate
estimation of bothTc and Ts is hardly possible, one of the
translations must be discarded. Previous works [14], [37]
showed that, for the thigh, the magnitude of the STA is greater
than the displacement of the joint center. Therefore, we decide
to compute the best estimate ofTs and to assume thatTc is
close from null. Oppositely, for the pelvis, it appears thatthe
STA remains small. Thus, for this bone we assume thatTs is
close from null and we estimateTc instead. Finally, the best
transformation that minimizes the error made globally on the

markers is computed for each segment. The solution is given
by minimizing the sum of squared distances between actual
and model-determinated marker positions. This is basically
a least-squares minimization for which we use the rfsqp
optimizer [38].

V. VALIDATION AND RESULTS

To validate the automatic segmentation procedure, medical
experts performed manual segmentations on four datasets. Fol-
lowing the generic construction approach, the required number
of constraints points, necessary to reach satisfactory results,
are placed. These “gold-standard” results were compared to
those of the automatic segmentation. The mean distance (std.
dev.) was 1.25 mm (1 mm) for bones and 1.7 mm (1.8 mm)
for muscles. Since the expert editing remains prone to errors
and the average distance is close to the image resolution (≈ 1

mm), the proposed method is considered as accurate. Skin
segmentation took around 60 sec and was visually validated.
Moreover, the overall segmentation required around 15 min on
a standard PC. This depicts a fast method given the complexity
of the task. Cartilages and ligaments segmentation cannot be
accurately identified in MRI (except maybe in arthro-MRI with
contrast agent injection). Hence, a qualitative assessment was
conducted. According to clinicians, a good agreement between
3D models and anatomical structures was found. Fig. 4B
illustrates some of the results.
The validation of the joint kinematics estimation has been
obtained using marker position data, collected during abduc-
tion motion patterns on 6 volunteers scanned with our dMRI
protocol. The subjects were equipped with external MRI-
compatible marker sets and a tracking device was used to
ensure the movements repeatability. For each instant frame, the
position and orientation of both the hip and femur bones were
computed. The kinematics derived from the marker position
data were compared with that of the MRI bone tracking.
The root mean square reconstruction error was 2.3/3.9/4.1
mm in femur x/y/z translation and 2.3/1.4/1.9 deg in femur
orientation. From these results, the errors in femur rotation are
significantly reduced by applying the proposed method, with
respect to the traditional ones. The translation errors area bit
more significant, but are strongly related to the magnitude of
skin deformations during movements. Indeed, our validation
data only featured markers on the thigh. Hence, we could only
calculate the error made on the femur translation, which, as
said previously exhibits a lot of skin motion and was thus
discarded by our approach.
The proposed framework is applied to medical case studies.
For example, relevant clinical output was obtained on a
study involving professional ballet dancers. The motivation
for this study was that dancers activities (extreme movements,
repeated motion) can be at the origin of joint pathologies.
Based on patient-specific reconstructed data, a support for
standard morphological measurements [39], [40] was pro-
posed, improving the (subjective) reading of medical images
(Fig. 4D). Moreover, the visualization in real-time of patient-
specific joints in extreme postures led the validation of clinical



Fig. 4. A) Skin markers configuration B) Modeling results: bones (left), cartilages and ligaments (top) and muscles colored by anatomical groups (bottom)
C) Real and computed postures from MoCap data (grand plié) D) Morphological measurements: alpha angle (top), acetabular version (middle and bottom)

assumptions. Indeed, unexpected bone/ cartilage collisions
were observed during these extreme movements, establishing
a correlation between the contact zone and diagnosed lesions.
This confirms that motion can be a factor of joint degeneration.
Fig. 4C shows examples of computed dancer’s postures.

VI. CONCLUSION AND FUTURE WORK

In the course of their work, clinicians are required to
analyze large amounts of data related to musculoskeletal
anatomy, kinematics, dynamics, mechanics and physiology.
They must therefore manage and visualize information at
increasing levels of complexity. To reduce this complexity
and to exploit the information efficiently, it is fundamental
to centralize and structure the multimodal data inputs in a
comprehensive manner. In addition, the diagnosis is mainly
based on static radiological images and external palpationthat
give information about the patients anatomy and joint mobility.
However, in most of the pathological cases, it is also important
to resort to biomechanics methodologies and motion protocols
to analyze more precisely the pathology and to determine its
causes. The proposed framework is specifically designed in
this aim. The developed tools and the combined internal (bones
and soft tissues)/ external (skin) functional visualization of
the subject provides a more comprehensive view of the joint
configuration and is expected to support the diagnosis.
Future work will address the following points that are sched-
uled in Co-Me [20] and 3D Anatomical Human [19] projects.
Firstly, a more thorough validation of the multimodal modeling
will be conducted. Segmentation accuracy will be improved,
especially regarding cartilage extraction, as currently aquan-
titative validation is missing. Following, additional dMRI
experiments will be carried out to estimate the error made on
the pelvis translation. Secondly, additional acquisitiondevices
such as EMG and force-plate will be added to the framework
to provide valuable biomechanical parameters. Finally, the

complex mechanical behavior of musculoskeletal tissues (e.g.,
biphasic, viscoelastic, non linear, etc.) will be simulated to
highlight abnormal stress distributions in case of pathological
patients. This will demand effort in volumetric meshing,
simulation and mechanical parameters measurement.
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