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Multi-body Optimization with Subject-Specific Knee Models: 

Performance at High Knee Flexion Angles 

When estimating knee kinematics from skin markers and stereophotogrammetry, 

multi-body optimization (MBO) has provided promising results for reducing soft 

tissue artefacts (STA), but can still be improved. The goal of this study was to 

assess the performance of MBO with subject-specific knee models at high knee 

flexion angles (up to 110°) against knee joint kinematics measured by magnetic 

resonance imaging. Eight subjects were recruited. MBO with subject-specific 

knee models was more effective in compensating STA compared to no kinematic 

and spherical constraints, in particular for joint displacements. Moreover, it 

seems to be more reliable over large ranges of knee flexion angle. The ranges of 

root mean square errors for knee rotations / displacements were 3.0°-9.2° / 1.3-

3.5 mm for subject-specific knee models, 6.8°-8.7° / 6.0-12.4 mm without 

kinematic constraint and 7.1°-9.8° / 4.9-12.5 mm for spherical constraints. 

Keywords: Soft tissue artefact; Knee; Multi-body optimization, Joints and 

ligament constraints, Subject-specific modeling; High knee flexion 

Introduction 

Stereophotogrammetry and the use of skin markers are a widely recognized technique to 

analyze human movement. The aim is to deduce the kinematics of the bone segments 

under investigation from the trajectories of the skin markers. However, such technique 

is subject to soft tissue artifacts (STA) due to muscle contractions and skin sliding, 

causing the markers to move with respect to the underlying bone (Leardini et al.2005). 

In the lower extremity, the thigh is particularly affected. To solve this issue, several 

techniques were proposed. Some of them computed the optimal bone pose from a 

marker cluster by considering each segment separately (Söderkvist and Wedin1993; 

Chèze et al.1995), while other methods, such as multi-body optimization (MBO) (Lu 

and O’Connor1999; Duprey et al.2010; Bergamini et al.2011; Gasparutto et al.2015; 

Clément et al.2015; Richard et al.2016; Clément et al.2017; Richard et al.2017), aimed 



at optimally estimating the location of bone segments, modelled as a kinematic chain of 

rigid bodies connected by articulating joints, by minimizing the distances between the 

model-determined and the measured marker trajectories. A recent review on the use and 

applications of MBO is given in Leardini et al. (2017). 

The use of MBO for determining knee kinematics provided promising results 

(Duprey et al.2010; Gasparutto et al.2015; Clément et al.2015; Richard et al.2016), but 

validation of the method remains limited. In particular, MBO methods rely on the 

determination of a predefined kinematic model with specific joint constraints. Simple 

kinematic constraints (spherical or hinge joints) were introduced, but showed mixed 

results. Stagni et al. (2009), Andersen et al. (2010), Clément et al. (2017) and Richard et 

al. (2017) obtained significant errors at the knee level evidencing limitations in reducing 

STA, especially its effect on joint translations. Opposite results were found in 

Gasparutto et al. (2015) and Richard et al. (2016) where spherical constraints performed 

better than models with no kinematic constraint, leading the authors to conclude that 

imposing joint constraints could be valuable. These studies suggested that more 

advanced models implementing anatomical constraints, together with accurate 

parameter identification, could improve results.  

Anatomical constraints were thus proposed by taking into account the articular 

surfaces and the ligaments. Duprey et al. (2010) and Clément et al. (2017) modeled the 

knee using parallel mechanisms with sphere-on-plane contacts (Feikes et al.2003) and 

three isometric ligaments of constant length: anterior cruciate ligament (ACL), posterior 

cruciate ligament (PCL) and medial collateral ligament (MCL). This concept was 

further developed in Bergamini et al. (2011), Gasparutto et al. (2013) and Gasparutto et 

al. (2015) taking into account the four major ligaments (ACL, PCL, MCL and the lateral 

medial collateral ligament (LCL)) and different deformable conditions: minimal 



ligament length variations or prescribed ligament length variations as a function of knee 

flexion angle. The latter study concluded that anatomical constraints helped reduce STA 

compared to no kinematic constraint or degree-of-freedom (DoF) coupling curves 

(Walker et al.1988). To account for ligament deformability, a “soft” constraint (i.e., 

stiffness matrix) and a penalty-based method were also introduced in Richard et al. 

(2016). The authors suggested as in Gasparutto et al. (2015) that for a better definition 

of joint models, personalization should be considered for further improvements.  

The importance of improving the accuracy of kinematic models to reduce the 

errors in calculated joint kinematics using personalization from medical imaging has 

been demonstrated previously (Scheys et al.2011; Clément et al.2015; Valente 

et al.2015; Sreenivasa et al.2016; Kainz et al.2016). In particular, Clément et al. (2015) 

evaluated the performance of knee joint models with subject-specific kinematic 

constraints in healthy and osteoarthritis subjects during quasi-static squats. Different 

kinematic chains of four lower limb segments were compared using various 

combinations of joint models (a mix of no kinematic constraint, spherical joints and 

parallel mechanisms with customized minimal ligaments length variation). Results 

showed that personalization improved STA compensation, especially for the knee 

internal/external rotation, abduction/adduction, antero-posterior and proximal-distal 

displacements in both groups of tested subjects. This is to our knowledge the only work 

to date assessing personalized knee models in MBO for STA compensation. Therefore, 

further investigation is required to attest their validity.  

Another aspect common to all previously cited studies is that the knee ranges of 

motion (ROM) of the activities considered in the in vivo experiments were limited to 

small flexion angles (usually between 40-65°). Indeed, these studies focused on typical 

clinical movements (e.g. gait, running, limited squat), but for many sport activities (e.g. 



dance, gymnastic, judo, hockey) higher ROM is usually performed. The performance of 

MBO at higher knee flexion angles should be hence verified and we expected that the 

more advanced models such as parallel mechanism would provide better results, since 

they are able to more realistically model the complex physiological kinematic behavior 

of the knee that comes into play at higher ROM (i.e., knee rollback) (Duprey et al.2010; 

Leardini et al.2017). 

The objective of this study was thus to assess against in vivo knee joint 

kinematics measured by Magnetic Resonance Imaging (MRI) the performance of MBO 

with subject-specific knee models. Here, we introduced more refined knee joint models 

to reproduce, at best, specific knee geometry: the standard sphere-on-plane contacts 

were replaced by surface-on-plane contacts, and the ligaments attachment sites were 

defined with reference to MRI. Moreover, the performance of MBO is evaluated at high 

knee flexion angles, up to 110°. For comparison, MBO methods with no kinematic and 

with spherical constraints were also studied.  

Materials and methods 

Subjects 

The measurements were made on the right knee of eight healthy young active 

participants (five females, three males). The mean age, weight and height were 27.1 

years, 61.3 kg and 166 cm, respectively. Because of the technical protocol, a height 

criterion was used. The subjects higher than 180 cm were excluded. Other exclusion 

criteria were reported previous knee injuries, knee surgery or contraindications for MRI. 

Institutional ethical approval and informed consent were obtained prior to data 

collection.  



Experimental protocol 

All volunteers were MRI scanned with a 1.5 T Optima MR450w GEM system (General 

Electric Healthcare, Milwaukee, WI, USA). A flexible surface coil was used and images 

were acquired at several unloaded knee flexions: 0°, 45°, 90° and 110°. At neutral knee 

flexion (0°), the subjects were placed in supine position. One 3D intermediate weighted 

fast spin echo without fat saturation (Cube®) sequence (section thickness 0.8 mm; no 

gaps; TR/TE ms 1500/27.9) centered on the knee and three 3D fast gradient echo 

(Lava®) sequences (section thickness 3 mm; no gaps; TR/TE ms 4.2/2.0) were achieved 

covering a region of interest from the pelvis to the ankle, as shown in Figure 1A. For the 

other flexion angles, the subjects were lying on the right side to ensure sufficient room 

to center the knee joint in the magnetic bore. A hand-held goniometer was used to 

position the subject’s lower limb at the desired knee flexion. For each position, one 3D 

intermediate weighted fast spin echo without fat saturation (Cube®) sequence and two 

3D fast gradient echo (Lava®) sequences were acquired (Figure 1B). It is worth 

mentioning that changing orientation of the body in the MRI scanner resulted in soft 

tissues shape changes.   

The subjects were equipped with external MRI-compatible markers set placed 

directly onto the skin using adhesive tape. We used spherical capsules (Ø10 mm) of 

Burgenstein Vitamin E (Antistress AG, Switzerland) because of their highly visible 

MRI signal. The femur marker set included three markers placed on anatomical 

landmarks (greater trochanter, lateral and medial femoral epicondyles) and four markers 

distributed on the lateral and frontal parts of the thigh (see Figure 1). For the tibia, three 

markers were placed on anatomical landmarks (tibial tuberosity, medial and lateral 

malleoli), one on the lateral part and one on the medial part of the shank. Markers were 

placed as much as possible on skin areas susceptible to show less sensitivity to STA 



according to previous studies (Stagni et al.2005; Akbarshahi et al.2010; Kuo et al.2011; 

Tsai et al.2011). The same investigator (CC) attached all markers and performed all 

measurements. 

 

Figure 1. MRI volumes acquired A) in neutral knee flexion (frontal view) and B) at 90° 

knee flexion (lateral view). Markers are also shown. GT = greater trochanter, LFC = 

lateral femoral epicondyle, MFC = medial femoral epicondyle, TT = tibial tuberosity, 

MMA = medial malleoli, LMA = lateral malleoli, T1-T6 = technical markers. 

Kinematic knee models 

Bone geometry was obtained from 3D reconstruction based on the 3D images in neutral 

knee flexion. The MRI volumes were registered and manually segmented using Mimics 

software (Materialize NV, Leuven, Belgium). For each volunteer, subject-specific 3D 

models of the femur and tibia were thus obtained.  

Parallel mechanism was modeled with four ligaments (ACL, PCL, MCL, LCL) 

and two surface-on-plane contacts, providing more accurate constraints than the 

standard sphere-on-plane contacts, since it takes into account the femur geometry and 

not an approximation. The surface-on-plane constraints forced the lateral and medial 

femoral condyles surfaces to maintain contact with the tibial plateaus, modeled as a 3D 



plane. The contact surfaces and the normal and point of planes were determined on the 

subject-specific knee bone models. To account for the articular cartilages, the tibial 

plateaus plane was then translated superiorly along its normal by the average thickness 

of the cartilages. We estimated this value to 4 mm (2 mm for the femoral and tibial 

cartilages, respectively) based on literature measuring cartilage thickness at the joint 

(Cohen et al.1999; Shepherd and Seedhom1999).  

  The origins and insertions of the four ligaments were defined for each subject 

by first identifying on the high-resolution 3D Cube® images the attachment surface and 

then taking its barycenter. Ligament length variations measured in all subjects during 

the experiment were fitted with polynomial functions of the knee flexion angle θ. Table 

1 provides for each ligament the computed coefficients of the polynomial interpolation. 

A leave-one-out analysis was performed for each ligament to evaluate how well the 

polynomial interpolation would generalize to an independent dataset. The computed 

leave-one-out cross validation errors are given in Table 1, showing that the ligament 

length variation models were not overfitting the data. 

Table 1. Coefficients of the polynomial interpolation* used to fit ligament length 

variations (% of elongation compared to the length at neutral knee flexion) with respect 

to the knee flexion angle θ. The last column provides the leave-one-out cross validation 

error (LOO-XVE) for each ligament evaluating how well the polynomial interpolation 

would generalize to an independent dataset. 

 
ACL (l = 1) PCL (l = 2) MCL (l = 3) LCL (l = 4) 

𝛼0
𝑙  0.9963 0.9996 0.9974 1.0037 

𝛼1
𝑙  0.0012 -0.0045 -0.0004 -0.0003 

𝛼2
𝑙  1.58e-05 -2.54e-05 -1.23e-05 -1.09e-05 

LOO-XVE 0.052 0.060 0.042 0.046 

* 𝑑𝑙(𝜃) = 𝑎0
𝑙 + 𝑎1

𝑙 𝜃 + 𝑎2
𝑙 𝜃2 



Multi-body optimization and constraints 

The aim of MBO is to minimize the sum of square distances between model-determined 

and measured skin marker positions by optionally taking into account a certain number 

of kinematic constraints (Lu and O’Connor1999; Duprey et al.2010; Gasparutto 

et al.2015; Richard et al.2016; Clément et al.2017; Richard et al.2017). In this study, 

MBO was applied to two segments – the femur and the tibia. Three different kinematic 

models were considered: First, no kinematic constraint (N) was imposed to the knee 

joint (full 6 DoF), equivalent to a least square segment pose estimation, such as the 

singular value decomposition (SVD) (Söderkvist and Wedin1993). Second, a spherical 

joint constraint (S) (Lu and O’Connor1999) was introduced limiting movement to 

rotation only (3 DoF). The center of rotation was taken as the midpoint between the 

lateral and medial femoral epicondyles. Third, parallel mechanism constraints (P) were 

applied considering the two surface-on-plane contacts and the four ligament length 

variations, implemented as a penalty-based method (Gasparutto et al.2013; Charbonnier 

et al.2014) as follows:  

 
𝑚𝑖𝑛 ∑ (∑ 𝛼𝑠𝑖‖𝑇𝑠𝑥𝑠𝑖 − 𝑦𝑠𝑖‖2

𝑛𝑠

𝑖=1

) + 𝛽 ∑ 𝐷𝑒
2

2

𝑒=1

+ ∑ 𝛾𝑙(𝐿𝑙 − 𝐿𝑟𝑒𝑓𝑙)2

4

𝑙=1

2

𝑠=1

 (1) 

The optimal pose 𝑇𝑠 (i.e., 3 rotational components (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) and 3 translational 

components (𝑡𝑥, 𝑡𝑦, 𝑡𝑧)) for each segment 𝑠 corresponds to the minimization of three 

terms: 

• the square distances between the model-based (𝑥𝑠𝑖) and the measured (𝑦𝑠𝑖) 

marker coordinates in the segment’s cluster (𝑛𝑠 markers in segment’s cluster 𝑠) 

with a weighting factor 𝛼𝑠𝑖 to reflect different degrees of STA, as described by 

Lu and O’Connor (1999); 



• the square distance 𝐷𝑒
2 between the lateral (𝑒 = 1) or medial (𝑒 = 2) condyle 

surface and the tibial plateaus plane translated superiorly along its normal by 4 

mm for the given pose with a weighting factor 𝛽, where 𝐷𝑒 is the minimum of 

the distances between each point of the condyle and the tibial plateaus plane 

(note that under the modelling assumption that cartilage thickness is constant 

over the whole articular surfaces and between subjects, this term tends to zero); 

• the square difference between the computed ligament length 𝐿𝑙 for the ligament 

𝑙 and the reference ligament length 𝐿𝑟𝑒𝑓𝑙 obtained by multiplying the rest length 

(measured at neutral knee flexion) with the estimated variation calculated for the 

given pose with the polynomial interpolation (see Table 1) and weighted by 𝛾𝑙 to 

reflect different ligament contributions. Given the large ROM studied, 

prescribed ligament length variations were preferred over minimized ligament 

length variations around the average length. 

The model-based (𝑥𝑠𝑖) marker coordinates were established in neutral knee 

flexion. For all kinematic models and for simplicity, equal weighting factors (𝛼𝑠𝑖 =
1

𝑛𝑠
 ) 

were assigned to the markers of the femur and tibia. No different weighting factor was 

applied between the surface-on-plane constraints (𝛽 =  
1

2
), nor between the ligaments 

(𝛾𝑙 =
1

4
). Overall, the distribution of weights between the three terms of Equation (1), 

which are all homogeneous to a squared distance, was chosen so that each term was of 

the same order of magnitude. The initial guess used in MBO was computed from the 

skin markers using SVD. Equation (1) was solved by a non-linear BFGS optimization 

(Byrd et al.1995). 



Validation procedure 

In order to assess the performance of the three models used in MBO to compensate for 

STA at several knee flexions, model-based knee kinematics derived from the skin 

markers was compared to the knee kinematics derived from the MRI scans. The MR 

series were processed, the bones segmented and the reference bone positions and 

orientations were calculated by registering the subject-specific knee bone models to 

each MRI pose using the iterative closest point algorithm (Besl and McKay1992). Skin 

markers visible on the MR images were manually labelled and the centers of gravity of 

each marker were determined. 

After MBO, descriptive statistics and in particular the root mean square errors 

(RMSEs) between the model-based and the reference kinematics were computed for 

each method at each flexion angle and for the overall ROM (i.e., cumulated data for the 

three flexion angles). Knee joint angles and displacements were calculated with the 

femur and tibia segment coordinate systems defined following the recommendations of 

the ISB (Wu et al.2002) using anatomical landmarks identified on the subject-specific 

knee bone models by virtual palpation. The center of the femoral head was calculated 

using a sphere fitting method (Schneider and Eberly2003). 

Results 

RMSEs between the model-based knee kinematics computed by the three MBO 

methods and the reference kinematics at 45°, 90° and 110° of knee flexion and for the 

entire ROM are shown in Figure 2. Figure 3 presents box-and-whisker plots of the 

kinematic errors. Information about the actual ROM at the different knee flexion angles 

is also reported in Table 2. 

 



 

Figure 2. RMSEs for the three MBO methods at various knee flexion angles (45°, 90° 

and 110°) and for the overall ROM. 

 

 

Table 2. Mean ± standard deviation of the actual ROM at 45°, 90° and 110° of knee 

flexion. Abduction (-) / adduction (+), AA; internal (+) / external (-) rotation, IE; lateral 

(+) / medial (-) displacement, LM; anterior (+) / posterior (-) displacement, AP; and 

proximal (+) / distal (-) displacement, PD. 

Flexion 

angle 
AA (°) IE (°) LM (mm) AP (mm) PD (mm) 

45° 7.8 ± 4.0 1.0 ± 7.8 -3.1 ± 1.3 6.4 ± 3.6 0.0 ± 3.5 

90° 6.4 ± 4.4 7.2 ± 6.2 -4.6 ± 1.4 12.1 ± 2.6 1.7 ± 5.4 

110° 4.9 ± 3.2 9.1 ± 6.2 -6.0 ± 1.8 17.4 ± 1.7 3.6 ± 6.5 

 

 



Overall, the lowest RMSEs in all anatomical planes were obtained with the 

parallel mechanism constraints. Compared to constraints N and S, the model P was 

particularly good in minimizing displacements errors (between 1.3 and 3.5 mm vs. 6.0 

and 12.4 mm and 4.9 and 12.5 mm for N and S, respectively). RMSEs for 

flexion/extension and abduction/adduction obtained with model P were also smaller 

(5.8° and 3.0°, respectively), but were comparable for internal/external rotation 

compared to the other models (9.2°). For constraints N and S, the RMSEs among the 

joint angles showed comparable results (difference of 1°), while the model S was more 

accurate than the model N for lateral-medial and proximal-distal displacements, but less 

accurate for the anterior-posterior shift. 

In terms of inter-subject variability, model P demonstrated globally the best 

median and inter-quartile of errors (Figure 3), in particular for abduction/adduction and 

proximal-distal displacements.  For all flexion angles, constraints N and S exhibited 

comparable variability across subjects, but model S depicted smaller inter-quartile 

ranges than model N for displacement errors. 

RMSEs for flexion/extension increased for constraints N and S with higher knee 

flexion angles, whereas RMSEs were in the similar range over all flexion angles for 

model P. For the other anatomical planes, as well as for displacements, parallel 

mechanism constraints seem to have more stable errors across the whole ROM. 

Interestingly, RMSEs for internal/external rotation were high for the three methods. 

 



 

Figure 3. Box-and-whisker plots of the kinematic errors for the three MBO methods at 

various knee flexion angles (45°, 90° and 110°) and for the overall ROM. 

Discussion 

In this study, we compared three MBO methods with different joint constraints against 

in vivo knee joint kinematics measured by MRI at high knee flexion angles. Moreover, 

we introduced anatomical constraints based on subject-specific knee joint models, 

taking into account personalized ligaments attachment sites and knee bone geometry.  

This is the first in vivo study evaluating the performance of MBO methods at high knee 

flexion angles, up to 110°. 

Defining a kinematic model to be used in MBO in order to derive accurate knee 

joint kinematics based on skin markers is critical. The use of no kinematic constraint or 

spherical constraints was thoroughly analyzed (Stagni et al.2009; Andersen et al.2010; 



Gasparutto et al.2015; Richard et al.2016; Clément et al.2017; Richard et al.2017) 

showing mixed results but most often inaccurate model-based kinematics. For instance, 

Stagni et al. (2009) reported mean RMSEs between 8° and 13° for knee rotations and 

between 5 and 20 mm for knee displacements during squatting. In the same activity, 

Clément et al. (2017) recorded mean RMSEs around 3-8° for knee rotations but less 

errors for knee displacements (2-3 mm). Our results for the spherical model were 

similar showing large RMSEs for all anatomical planes and in particular for joint 

displacements. According to our findings, the use of parallel mechanisms with subject-

specific knee models gave lower error ranges, except for internal/external rotation. 

Indeed, RMSEs for internal/external rotation were not improved but comparable with 

the methods with no kinematic or with spherical constraints and were also high. 

Whereas the two latter models impose no limitation in rotational movement, parallel 

mechanisms attempt to reproduce the biomechanical behavior of the knee ligaments that 

play a role in stabilizing the joint and thus limiting excessive ROM, which did not 

improve results for internal/external rotation in the present study. One explanation could 

be that the subjects were lying on the side during the MRI acquisitions. Abnormal STA 

were likely to be induced by soft tissue compression of the leg in contact with the MRI 

table, as well as by the change of gravity compared to the MRI acquisitions in supine 

position for the neutral knee flexion. 

For quasi-static squats studied at five knee positions (0°, 30°, 40°, 50° and 60°), 

Clément et al. (2015) compared model-based kinematics measured using the KneeKG™ 

– a motion capture device designed to limit STA (Lustig et al.2012) – with the 

kinematics measured by biplanar radiographic imaging system (EOS®) on 10 subjects. 

Using subject-specific kinematic constraints, they reported RMSEs of 2.2 ± 1.2° and 5.2 

± 3.8° for abduction/adduction and internal/external rotation, respectively, and 4.3 ± 2.4 



mm, 3.2 ± 2.1 mm and 2.4 ± 1.1 mm for medial/lateral, anterior/posterior and 

proximal/distal displacements, respectively. The use of the subject-specific kinematic 

constraints in the present study gave better accuracy for joint displacements, but greater 

errors for joint angles. These greater errors could be explained by the fact that the 

KneeKG™ device tackled STA more effectively than the marker set used in the present 

study. Moreover, we investigated larger ROM up to 110°, thus more important STA 

could be expected. Finally, Clément et al. (2015) used a complete lower limb model (4 

segments and 3 joints, from the hip to the foot) in MBO, resulting in better optimization 

performances as previously reported (Duprey et al.2010).   

Another foreseen finding of the present study is that the parallel mechanism 

constraints seem to have more stable errors across the whole ROM and less inter-subject 

variability. Compared to simple kinematic constraints, errors did not increase with knee 

flexion angle, and the results of model P demonstrated the best median and inter-

quartile of errors. Indeed, these mechanisms seemed to model appropriate physiological 

knee patterns (i.e. femoral rollback, limited abduction/adduction), as previously 

evidenced (Duprey et al.2010; Leardini et al.2017). Furthermore, they have the unique 

advantage of being customizable with subject-specific knee joint geometry, hence 

offering the possibility to adapt the model to pathologies and to conduct clinical studies. 

STA being known to be subject-specific (Leardini et al.2005), adding more personalized 

anatomical constraints is also expected to reduce more effectively the inter-subject 

variability of the model-derived kinematics. 

We acknowledge some limitations in the present study. First, we assessed the 

performance of MBO methods in reducing STA errors against in vivo knee joint 

kinematics measured by MRI during static and non-weight-bearing knee poses, which 

does not represent dynamic activities for which STA would be different (due to inertia 



effects, muscle contractions, etc.). In the literature, two types of technique are generally 

used as gold standard to evaluate methods for STA compensation. The first type uses 

strongly invasive metallic rods inserted directly into the bone and instrumented with 

cluster of markers to derive true bone movements, such as intra-cortical pins (Benoit 

et al.2006; Gasparutto et al.2015; Richard et al.2017). The second type uses 

fluoroscopic acquisitions (Stagni et al.2005; Lin et al.2016; Richard et al.2016; Richard 

et al.2017) which has two main drawbacks: firstly, the 3D movement is estimated from 

biplanar radiographs and secondly the method uses ionizing radiation. Conversely, MRI 

acquisitions are not invasive and provides full 3D images of the joint with visualization 

of the soft tissues, but the volumes of the knee need to be acquired in static positions. 

Therefore, we consider this technique more suitable for a study involving healthy 

volunteers. Another limitation was that the parallel mechanisms used in MBO to 

compute model-based knee kinematics of the subjects were based on polynomial 

functions built from the validation data obtained from the same subjects, which 

represents a source of bias. Eventually, instead of using a constant cartilage thickness in 

the sphere-on-plane constraints, cartilages could have been segmented on MRI to obtain 

subject-specific and accurate thickness estimation of these structures, but this would 

have required an invasive arthro-MRI (with injection of contrast agent) to allow for a 

reliable segmentation of the soft tissues.  

Conclusion 

The results of this study seem to confirm the findings of Clément et al. (2015) and 

indicate that MBO combined with subject-specific knee models can improve knee 

kinematics estimation based on skin markers, in particular for the determination of joint 

displacements. In addition, this method seems to be more reliable over large ranges of 

knee flexion angle, since it models more precisely the physiological behavior of the 



knee joint. Although this method should be further validated with large ROM during 

dynamic movements, it provides promising results for the study of pathologies or 

injuries related to sport activities requiring high knee flexion.   
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